1
|
Sardo C, Auriemma G, Mazzacano C, Conte C, Piccolo V, Ciaglia T, Denel-Bobrowska M, Olejniczak AB, Fiore D, Proto MC, Gazzerro P, Aquino RP. Inulin Amphiphilic Copolymer-Based Drug Delivery: Unraveling the Structural Features of Graft Constructs. Pharmaceutics 2024; 16:971. [PMID: 39204316 PMCID: PMC11359108 DOI: 10.3390/pharmaceutics16080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, the structural attributes of nanoparticles obtained by a renewable and non-immunogenic "inulinated" analog of the "pegylated" PLA (PEG-PLA) were examined, together with the potential of these novel nanocarriers in delivering poorly water-soluble drugs. Characterization of INU-PLA assemblies, encompassing critical aggregation concentration (CAC), NMR, DLS, LDE, and SEM analyses, was conducted to elucidate the core/shell architecture of the carriers and in vitro cyto- and hemo-compatibility were assayed. The entrapment and in vitro delivery of sorafenib tosylate (ST) were also studied. INU-PLA copolymers exhibit distinctive features: (1) Crew-cut aggregates are formed with coronas of 2-4 nm; (2) a threshold surface density of 1 INU/nm2 triggers a configuration change; (3) INU surface density influences PLA core dynamics, with hydrophilic segment stretching affecting PLA distribution towards the interface. INU-PLA2NPs demonstrated an outstanding loading of ST and excellent biological profile, with effective internalization and ST delivery to HepG2 cells, yielding a comparable IC50.
Collapse
Affiliation(s)
- Carla Sardo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Carmela Mazzacano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.C.)
| | - Virgilio Piccolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Marta Denel-Bobrowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (M.D.-B.); (A.B.O.)
| | - Agnieszka B. Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (M.D.-B.); (A.B.O.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| |
Collapse
|
2
|
Prajapat R, Yadav H, Shaik AH, Kiran B, Kanchi RS, Shaik S, Said Z, Chandan MR, Chakraborty S. A review of the prospects, efficacy and sustainability of nanotechnology-based approaches for oil spill remediation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241257095. [PMID: 38915231 DOI: 10.1177/0734242x241257095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Numerous marine oil spill incidents and their environmental catastrophe have raised the concern of the research community and environmental agencies on the topic of the offshore crude oil spill. The oil transport through oil tankers and pipelines has further aggravated the risk of the oil spill. This has led to the necessity to develop an effective, environment-friendly, versatile oil spill clean-up strategy. The current review article analyses various nanotechnology-based methods for marine oil spill clean-up, focusing on their recovery rate, reusability and cost. The authors weighed the three primary factors recovery, reusability and cost distinctively for the analysis based on their significance in various contexts. The findings and analysis suggest that magnetic nanomaterials and nano-sorbent have been the most effective nanotechnology-based marine oil spill remediation techniques, with the magnetic paper based on ultralong hydroxyapatite nanowires standing out with a recovery rate of over 99%. The chitosan-silica hybrid nano-sorbent and multi-wall carbon nanotubes are also promising options with high recovery rates of up to 95-98% and the ability to be reused multiple times. Although the photocatalytic biodegradation approach and the nano-dispersion method do not offer benefits for recovery or reusability, they can nevertheless help lessen the negative ecological effects of marine oil spills. Therefore, careful evaluation and selection of the most appropriate method for each marine oil spill situation is crucial. The current review article provides valuable insights into the current state of nanotechnology-based marine oil spill clean-up methods and their potential applications.
Collapse
Affiliation(s)
- Ramchandra Prajapat
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Himanshu Yadav
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aabid Hussain Shaik
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bandaru Kiran
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rohit Sunil Kanchi
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Saboor Shaik
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Zafar Said
- Sustainable and Renewable Energy Engineering (SREE), College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Rehaan Chandan
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Samarshi Chakraborty
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Keller C, Kurita-Oyamada H, Grayson SM, Denslow ND. Physical Evidence of Oil Uptake and Toxicity Assessment of Amphiphilic Grafted Nanoparticles Used as Oil Dispersants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7917-7923. [PMID: 35580268 PMCID: PMC9227714 DOI: 10.1021/acs.est.1c08564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we report the toxicity evaluation of a new prototype dispersant system, silicon dioxide nanoparticles (NPs) functionalized with (3-glycidoxypropyl)triethoxysilane (GPS) and grafted poly(ε-caprolactone)-block-poly[oligo(ethylene glycol)methyl methacrylate mono-methyl ether] (NP-PCL-POEGMA). This serves as a follow up of our previous study where grafted silicon dioxide NPs functionalized with GPS and grafted hyperbranched poly(glycidol) (NP-HPG) were evaluated for reducing the toxicity in embryo, juvenile, and adult fish populations. In this study, the NP-HPG sample is used as a baseline to compare against the new NP-PCL-POEGMA samples. The relative size was established for three NP-PCL-POEGMA samples via cryogenic transmission electron microscopy. A quantitative mortality study determined that these NPs are non-toxic to embryo populations. An ethoxyresorufin-O-deethylase assay was performed on these NP-PCL-POEGMA samples to test for reduced cytochrome P450 1A after the embryos were exposed to the water-accommodated fraction of crude oil. Overall, these NP-PCL-POEGMA NPs better protected the embryo populations than the previous NP-HPG sample (using a protein activity end point), showing a trend in the right direction for prototype dispersants to replace the commercially utilized Corexit.
Collapse
Affiliation(s)
- Christopher
B. Keller
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hajime Kurita-Oyamada
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Nancy D. Denslow
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Corcoran LG, Saldana Almaraz BA, Amen KY, Bothun GD, Raghavan SR, John VT, McCormick AV, Penn RL. Using Microemulsion Phase Behavior as a Predictive Model for Lecithin-Tween 80 Marine Oil Dispersant Effectiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8115-8128. [PMID: 34191521 DOI: 10.1021/acs.langmuir.1c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.
Collapse
Affiliation(s)
- Louis G Corcoran
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Brian A Saldana Almaraz
- Washington Technology Magnet School, 1495 Rice Street, Saint Paul, Minnesota 55117, United States
| | - Kamilah Y Amen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Drive, College Park, Maryland 20742, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, 300 Lindy Boggs Building, New Orleans, Louisiana 70112, United States
| | - Alon V McCormick
- Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Savaş B, Çatıker E, Öztürk T, Meyvacı E. Synthesis and characterization of poly(α-methyl β-alanine)-poly(ε-caprolactone) tri arm star polymer by hydrogen transfer polymerization, ring-opening polymerization and "click" chemistry. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02367-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Keller CB, Walley SE, Jarand CW, He J, Ejaz M, Savin DA, Grayson SM. Synthesis of poly(caprolactone)- block-poly[oligo(ethylene glycol)methyl methacrylate] amphiphilic grafted nanoparticles (AGNs) as improved oil dispersants. Polym Chem 2021. [DOI: 10.1039/d1py00418b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic polymers have been covalently grafted from a SiO2 core with room temperature polymerizations. These amphiphilic grafted nanoparticles have been found to uptake up to 30 times their mass in crude oil within a 24 hour window.
Collapse
Affiliation(s)
- Christopher B. Keller
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Susan E. Walley
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Curtis W. Jarand
- Department of Physics and Engineering Physics, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Jibao He
- Coordinated Instrument Facility, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Muhammad Ejaz
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Daniel A. Savin
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Scott M. Grayson
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| |
Collapse
|
7
|
Zamboulis A, Nakiou EA, Christodoulou E, Bikiaris DN, Kontonasaki E, Liverani L, Boccaccini AR. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. Int J Mol Sci 2019; 20:E6210. [PMID: 31835372 PMCID: PMC6940955 DOI: 10.3390/ijms20246210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
In a century when environmental pollution is a major issue, polymers issued from bio-based monomers have gained important interest, as they are expected to be environment-friendly, and biocompatible, with non-toxic degradation products. In parallel, hyperbranched polymers have emerged as an easily accessible alternative to dendrimers with numerous potential applications. Glycerol (Gly) is a natural, low-cost, trifunctional monomer, with a production expected to grow significantly, and thus an excellent candidate for the synthesis of hyperbranched polyesters for pharmaceutical and biomedical applications. In the present article, we review the synthesis, properties, and applications of glycerol polyesters of aliphatic dicarboxylic acids (from succinic to sebacic acids) as well as the copolymers of glycerol or hyperbranched polyglycerol with poly(lactic acid) and poly(ε-caprolactone). Emphasis was given to summarize the synthetic procedures (monomer molar ratio, used catalysts, temperatures, etc.,) and their effect on the molecular weight, solubility, and thermal and mechanical properties of the prepared hyperbranched polymers. Their applications in pharmaceutical technology as drug carries and in biomedical applications focusing on regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eirini A. Nakiou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eleana Kontonasaki
- Department of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
8
|
Öztürk T, Kılıçlıoğlu A, Savaş B, Hazer B. Synthesis and characterization of poly(ɛ-caprolactone-co-ethylene glycol) star-type amphiphilic copolymers by “click” chemistry and ring-opening polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1481344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Temel Öztürk
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| | - Ali Kılıçlıoğlu
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| | | | - Baki Hazer
- Department of Chemistry, Faculty of Arts and Sciences, Bülent Ecevit University, Zonguldak, Turkey
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Ürgüp, Turkey
| |
Collapse
|
9
|
Abstract
Hollow polymer nanocapsules (HPNs) have gained tremendous interest in recent years due to their numerous desirable properties compared to their solid counterparts.
Collapse
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | | |
Collapse
|
10
|
Bentz KC, Savin DA. Chain Dispersity Effects on Brush Properties of Surface-Grafted Polycaprolactone-Modified Silica Nanoparticles: Unique Scaling Behavior in the Concentrated Polymer Brush Regime. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kyle C. Bentz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Bentz KC, Ejaz M, Arencibia S, Sultan N, Grayson SM, Savin DA. Hollow amphiphilic crosslinked nanocapsules from sacrificial silica nanoparticle templates and their application as dispersants for oil spill remediation. Polym Chem 2017. [DOI: 10.1039/c7py00342k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow nanocapsules were constructed using a sacrificial silica scaffold to produce novel oil remediation agents.
Collapse
Affiliation(s)
- Kyle C. Bentz
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | | | - Scarlett Arencibia
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Naomi Sultan
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | | | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|
12
|
Mohammadifar E, Zabihi F, Tu Z, Hedtrich S, Nemati Kharat A, Adeli M, Haag R. One-pot and gram-scale synthesis of biodegradable polyglycerols under ambient conditions: nanocarriers for intradermal drug delivery. Polym Chem 2017. [DOI: 10.1039/c7py01470h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable and biocompatible hyperbranched polymers are synthesized and their potential for dermal drug delivery is investigated.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
- Institute of Pharmacy (Pharmacology and Toxicology)
| | - Zhaoxu Tu
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
| | - Sarah Hedtrich
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Ali Nemati Kharat
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
- Department of Chemistry
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
| |
Collapse
|
13
|
Yin L, Xu S, Feng Z, Deng H, Zhang J, Gao H, Deng L, Tang H, Dong A. Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Biomater Sci 2017; 5:698-706. [DOI: 10.1039/c6bm00889e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel injectable and high-solid-content drug-loaded supramolecular hydrogel (PTX-mPECT NP/α-CDgel) was prepared by self-assembly of inclusion complexes based on PTX-loaded mPECT nanoparticles and α-cyclodextrin.
Collapse
Affiliation(s)
- Li Yin
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Shuxin Xu
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Zujian Feng
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Hongzhang Deng
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Jianhua Zhang
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Huijie Gao
- Tianjin Life Science Research Center and School of basic medical sciences Tianjin Medical University
- Tianjin 300070
- China
| | - Liandong Deng
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences Tianjin Medical University
- Tianjin 300070
- China
| | - Anjie Dong
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|