1
|
Design of molecularly imprinted polymer materials relying on hydrophobic interactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Gomes C, Dias R, Costa M. Hybrid cellulose-poly(4-vinylpyridine) adsorbents produced via ATRP and their application to target polyphenols in winemaking, olive oil production and almond processing residues. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Processing of Onion Skin Extracts with Quercetin-Molecularly Imprinted Adsorbents Working at a Wide Range of Water Content. Chromatographia 2020. [DOI: 10.1007/s10337-020-03958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Cegłowski M, Jerca VV, Jerca FA, Hoogenboom R. Reduction-Responsive Molecularly Imprinted Poly(2-isopropenyl-2-oxazoline) for Controlled Release of Anticancer Agents. Pharmaceutics 2020; 12:E506. [PMID: 32498326 PMCID: PMC7356239 DOI: 10.3390/pharmaceutics12060506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/09/2023] Open
Abstract
Trigger-responsive materials are capable of controlled drug release in the presence of a specific trigger. Reduction induced drug release is especially interesting as the reductive stress is higher inside cells than in the bloodstream, providing a conceptual controlled release mechanism after cellular uptake. In this work, we report the synthesis of 5-fluorouracil (5-FU) molecularly imprinted polymers (MIPs) based on poly(2-isopropenyl-2-oxazoline) (PiPOx) using 3,3'-dithiodipropionic acid (DTDPA) as a reduction-responsive functional cross-linker. The disulfide bond of DTDPA can be cleaved by the addition of tris(2-carboxyethyl)phosphine (TCEP), leading to a reduction-induced 5-FU release. Adsorption isotherms and kinetics for 5-FU indicate that the adsorption kinetics process for imprinted and non-imprinted adsorbents follows two different kinetic models, thus suggesting that different mechanisms are responsible for adsorption. The release kinetics revealed that the addition of TCEP significantly influenced the release of 5-FU from PiPOx-MIP, whereas for non-imprinted PiPOx, no statistically relevant differences were observed. This work provides a conceptual basis for reduction-induced 5-FU release from molecularly imprinted PiPOx, which in future work may be further developed into MIP nanoparticles for the controlled release of therapeutic agents.
Collapse
Affiliation(s)
- Michał Cegłowski
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
- Centre of Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Florica Adriana Jerca
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
- Centre of Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (V.V.J.); (F.A.J.)
| |
Collapse
|
5
|
Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019; 11:polym11122085. [PMID: 31847103 PMCID: PMC6960886 DOI: 10.3390/polym11122085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release. Our work aims to summarize the present state-of-the art of molecularly imprinted polymer-based drug delivery systems developed for anticancer therapy, with emphasis on the particularities of the chemotherapeutics’ release and with a critical assessment of the current challenges and future perspectives of these unique drug carriers.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Inorganic Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597-256 (int. 2838)
| |
Collapse
|
6
|
Preparation of Molecularly Imprinted Adsorbents with Improved Retention Capability of Polyphenols and Their Application in Continuous Separation Processes. Chromatographia 2019. [DOI: 10.1007/s10337-019-03728-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Talavat L, Güner A. Thermodynamic computational calculations for preparation 5-fluorouracil magnetic moleculary imprinted polymers and their application in controlled drug release. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gomes CP, Dias RCS, Costa MRPFN. Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Madadian-Bozorg N, Zahedi P, Shamsi M, Safarian S. Poly (methacrylic acid)-based molecularly imprinted polymer nanoparticles containing 5-fluourouracil used in colon cancer therapy potentially. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Neda Madadian-Bozorg
- Department of Life Science Engineering, Faculty of New Science and Technology; University of Tehran; Tehran Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box: 11155-4563 Tehran Iran
| | - Mohammad Shamsi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box: 11155-4563 Tehran Iran
| | - Shahrokh Safarian
- Department of Cell and Molecular Biology, School of Biology, College of Science; University of Tehran; 1417614411 Tehran Iran
| |
Collapse
|
10
|
PNIPAM-MAPOSS Hybrid Hydrogels with Excellent Swelling Behavior and Enhanced Mechanical Performance: Preparation and Drug Release of 5-Fluorouracil. Polymers (Basel) 2018; 10:polym10020137. [PMID: 30966173 PMCID: PMC6414838 DOI: 10.3390/polym10020137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is a widely-studied polymers due to its excellent temperature sensitivity. PNIPAM-MAPOSS hybrid hydrogel, based on the introduction of acrylolsobutyl polyhedral oligomeric silsesquioxane (MAPOSS) into the PNIPAM matrix in the presence of polyethylene glycol, was prepared via radical polymerization. The modified hydrogels exhibited a thick, heterogeneous porous structure. PEG was used as a pore-forming agent to adjust the pore size. MAPOSS reduced the swelling ratios of gels, and decreased the LCST, causing the hydrogels to shrink at lower temperatures. However, its hydrophobicity helped to improve the temperature response rate. The incorporation of rigid MAPOSS into the polymer network greatly increased the compressive modulus of the hydrogel. It is worth noting that, by adjusting the amount of MAPOSS and PEG, the hydrogel could have both ideal mechanical properties and swelling behavior. In addition, hydrogel containing 8.33 wt % MAPOSS could achieve stable and sustained drug release. Thus, the prepared PNIPAM-MAPOSS hybrid hydrogel can serve as drug carrier for 5-fluorouracil and may have potential application in other biomedical fields.
Collapse
|
11
|
Yang Y, Meng X, Xiao Z. Synthesis of a surface molecular imprinting polymer based on silica and its application in the identification of nitrocellulose. RSC Adv 2018; 8:9802-9811. [PMID: 35540849 PMCID: PMC9078706 DOI: 10.1039/c7ra13264f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
A surface molecular imprinting polymer (MIP) based on silica (SiO2/MIP) with excellent selective identification properties towards nitrocellulose (NC) was synthesized with methylacrylic acid as a functional monomer and NC as a template molecule, through simple in situ polymerization. The functional groups of SiO2/MIP were studied through Fourier transform infrared spectroscopy. The morphology, crystalline state and thermostability of SiO2/MIP were investigated respectively by scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. Binding capacity and selectivity studies of SiO2/MIP for NC and its analogues were carried out through ultraviolet-visible spectrophotometry. The thermal analysis and study of crystalline states confirmed the successful imprinting of NC in the polymer networks. The optimized conditions were found to be a polymerization temperature of 45 °C and a functional monomer to cross-linking ratio of 1 : 3. The adsorption capacity of SiO2/MIP was improved considerably compared with that of polymers prepared by traditional imprinting technology, with a maximum adsorption amount of 1.7 mg mg−1 in 2 mg ml−1 NC solution, compared with an adsorption capacity of about 0.5 mg mg−1 for a traditional MIP. According to the selectivity study, more NC was adsorbed by SiO2/MIP than its analogues; the best adsorption capacity of SiO2/MIP for NC was approaching 5 times that for carboxymethyl cellulose (CMC). The results show that it would be possible to apply SiO2/MIP for the detection of NC, to give improved sensitivity in security checking and improved contaminant adsorption. A novel surface molecular imprinting polymer was prepared which displayed excellent specificity, selectivity and a large adsorption capacity for nitrocellulose.![]()
Collapse
Affiliation(s)
- Yan Yang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiangjun Meng
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Zhenggang Xiao
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
12
|
Chen H, Zhang W, Yang N, Chen C, Zhang M. Chitosan-Based Surface Molecularly Imprinted Polymer Microspheres for Sustained Release of Sinomenine Hydrochloride in Aqueous Media. Appl Biochem Biotechnol 2017; 185:370-384. [PMID: 29152695 DOI: 10.1007/s12010-017-2658-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Abstract
The surface molecular imprinting technique has been proposed as a prospective strategy for template molecule recognition and separation by devising the recognition sites on the surface of imprinted materials. The purpose of this study was to establish a novel drug delivery system which was developed by surface molecular imprinting method using β-cyclodextrin (β-CD)-grafted chitosan (CS) (CS-g-β-CD) microspheres as matrix and sinomenine hydrochloride (SM) as the template molecule. By adjusting the amount of functional monomer and cross-linking agent, we got the more excellent adsorption of CS-g-β-CD molecularly imprinted polymers (MIPs-CS-g-β-CD). When the amount of functional monomer was 6 mmol and cross-linking agent was 20 mmol, the maximum binding capacity of MIPs and non-imprinted polymers (NIPs) was 55.9 mg/g and 37.2 mg/g, respectively. The results indicated that the recognition of SM with MIPs was superior to NIPs. The adsorption isotherms of MIPs-CS-g-β-CD indicated that the adsorption behavior fitted better to the Langmuir model, which showed that the adsorption process of polymer was monomolecular layer. In in vitro drug release studies, the accumulative release amount of MIPs-CS-g-β-CD was up to 78% within 24 h. MIPs exhibited an excellent controlled SM release profile without burst release and the mechanism of SM release was shown to conform to non-Fick diffusion. Therefore, MIPs-CS-g-β-CD were successfully applied to extraction of SM and used as the materials for drug delivery system.
Collapse
Affiliation(s)
- Hanqiu Chen
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Wen Zhang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF, Tianjin, 300162, China
| | - Chongmin Chen
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Mingliang Zhang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
13
|
Development of Molecularly Imprinted Polymers to Target Polyphenols Present in Plant Extracts. Processes (Basel) 2017. [DOI: 10.3390/pr5040072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
14
|
Oliveira D, Dias RC, Costa MR. Modeling RAFT Gelation and Grafting of Polymer Brushes for the Production of Molecularly Imprinted Functional Particles. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/masy.201600078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daniela Oliveira
- LSRE-Instituto Politécnico de Bragança; Quinta de Santa Apolónia 5300 Bragança Portugal
| | - Rolando C.S. Dias
- LSRE-Instituto Politécnico de Bragança; Quinta de Santa Apolónia 5300 Bragança Portugal
| | - Mário R.P.F.N. Costa
- LSRE-Faculdade de Engenharia da Universidade do Porto; Rua Roberto Frias s/n 4200-465 Porto Portugal
| |
Collapse
|