1
|
Ahmed EM, Feteha A, Kamal RS, Behalo MS, Abdel-Raouf ME. Preparation and potential of chitosan-based/Al 2O 3 green hydrogel composites for the removal of methyl red dye from simulated solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49626-49645. [PMID: 39080170 DOI: 10.1007/s11356-024-34347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Different dyes are discharged into water streams, causing significant pollution to the entire ecosystem. The present work deals with the removal of acid red 2 dye (methyl red-as an anionic dye) by green sorbents based on chitosan derivatization. In this regard, two classes of chitosan derivatives-a total of six-were prepared by gamma irradiation at 30 kGy. The first group (group A) constitutes a crosslinked chitosan/polyacrylamide/aluminum oxide with different feed ratios, while the second group, identified as group B, is composed of crosslinked carboxymethyl chitosan/polyacrylamide/aluminum oxide with different ratios. Glycerol was added to soften the resultant hydrogels. The products were characterized by different tools, including FTIR for confirming the chemical modification, TGA for investigating their thermal properties, and XRD for verifying their crystalline structure. The morphology of the prepared derivatives was studied through SEM, while their topography before and after dye adsorption was monitored via the AFM. The removal efficiencies of the prepared sorbents were verified at different operation conditions, such as pH, temperature, adsorbent dose, initial concentration of dye solutions, and contact time. The data revealed that the optimum conditions for maximum dye uptake were as follows: pH 4, contact time 120 min, 0.1-g sorbent dose, and 50-ppm dye concentration. Additionally, the prepared sorbents demonstrated potent adsorption capacity and removal efficiency. It was found that the elements of the second group displayed higher performance than their counterparts. The data showed also that the adsorption process best fits with the Freundlich model and obeyed pseudo-first-order kinetic isotherm. In addition, the synthesized composites showed observable antibacterial potency toward E. coli as a Gram-negative bacterium and S. aureus as a Gram-positive bacterium.
Collapse
Affiliation(s)
- Ebtehal Mosaad Ahmed
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - Amr Feteha
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - Rasha S Kamal
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Mohamed S Behalo
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt.
| | - Manar E Abdel-Raouf
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
2
|
Eftekhari-Sis B, Amirpour N, Naderahmadian A, Zirak M, Janeta M, Mahmoudi G. Amphiphilic Azo-Functionalized Polyhedral Oligomeric Silsesquioxane; Synthesis and Photo-Switched Efficient Phase Transfer via Host-Guest Encapsulation. Chempluschem 2024; 89:e202300628. [PMID: 38153180 DOI: 10.1002/cplu.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
A new amphiphilic azo-functionalized polyhedral oligomeric silsesquioxane (POSS) derivative was synthesized by functionalizing octa(3-aminopropyl)silsesquioxane (OAS-POSS) with 4-((4-(dodecyloxy)phenyl)diazenyl)benzoic acid, affording a hydrophilic amino POSS head and hydrophobic dodecyl tail with a diphenyl-azo connector. Prepared amphiphilic azo-functionalized POSS (azo-POSS) exhibited high ability for encapsulation and transferring cationic dyes into the organic phase by vigorously mixing with aqueous solutions of each dye. The photo-controlled encapsulating properties of the synthesized phase transfer reagent was studied using cationic dyes, such as methylene blue (MB), crystal violet (CV) and thymol blue in acidic conditions. Results showed more than 95 % encapsulation of MB. However, no considerable encapsulation was shown in the case of anionic dyes such as eriochrome black T (EBT) and thymol blue in alkaline solutions. By trans/cis isomerization of the azo moiety of the phase transfer reagent by UV irradiation (365 nm), the amount of dye encapsulation was decreased, which could be attributed to the formation of cis isomer that led to the folding of the dodecyl alkyl tail on the POSS moiety, and therefore prevent to lay the 3-aminopropyl moieties of POSS head to the water/DCM interface to adsorb and encapsulate MB molecules.
Collapse
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| | - Nasim Amirpour
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| | - Aylar Naderahmadian
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Mateusz Janeta
- Faculty of Chemistry, University of Wrocław F., Joliot-Curie 14, 50-383, Wrocław
| | - Ghodrat Mahmoudi
- Department of Chemistry, University of Maragheh, Golshahr, P.O.Box, 55181-83111, Maragheh, Iran
| |
Collapse
|
3
|
Naderahmadian A, Eftekhari-Sis B, Jafari H, Zirak M, Padervand M, Mahmoudi G, Samadi M. Cellulose nanofibers decorated with SiO 2 nanoparticles: Green adsorbents for removal of cationic and anionic dyes; kinetics, isotherms, and thermodynamic studies. Int J Biol Macromol 2023; 247:125753. [PMID: 37429351 DOI: 10.1016/j.ijbiomac.2023.125753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Cellulose nanofibers decorated with SiO2 nanoparticles (SiO2-CNF) were prepared by the extraction of cellulose nanofibers from Yucca leaves, followed by modification with SiO2 nanoparticles, and used as efficient materials for the removal of both anionic and cationic dyes from the aqueous solution. Prepared nanostructures were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction powder (XRD), Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM) analysis. The adsorption capacity of the nanostructures was investigated for the removal of both cationic (Methylene Blue, MB, and Crystal Violet, CV) and anionic (Eriochrome Black-T, EB) dyes. The kinetics of adsorption were investigated using some well-known models, including intraparticular diffusion (IPD), pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich. The adsorption isotherms were also explored using the Langmuir, Freundlich, Temkin, and Redlich-Peterson models. The obtained results revealed that the adsorption processes follow PSO kinetic and Langmuir isotherm models. Thermodynamic parameters of the adsorption were measured at different temperatures, indicating the feasibility and spontaneity of the adsorption. The pH and salt effects on adsorption were also explored. Finally, according to the reusability tests, the prepared adsorbents showed high recoverability without considerable loss in adsorption efficiency after five repeated runs.
Collapse
Affiliation(s)
- Aylar Naderahmadian
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| | - Bagher Eftekhari-Sis
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran.
| | - Hessam Jafari
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Mohsen Padervand
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| | - Ghodrat Mahmoudi
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran; Samara State Technical University, Molodogvardeyskaya Str 244, Samara 443100, Russia
| | - Maryam Samadi
- Department of Chemistry, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
| |
Collapse
|
4
|
Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem Soc Rev 2023. [PMID: 37464914 DOI: 10.1039/d3cs00387f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanocolloidal gels (NCGs) are an emerging class of soft matter, in which nanoparticles act as building blocks of the colloidal network. Chemical or physical crosslinking enables NCG synthesis and assembly from a broad range of nanoparticles, polymers, and low-molecular weight molecules. The synergistic properties of NCGs are governed by nanoparticle composition, dimensions and shape, the mechanism of nanoparticle bonding, and the NCG architecture, as well as the nature of molecular crosslinkers. Nanocolloidal gels find applications in soft robotics, bioengineering, optically active coatings and sensors, optoelectronic devices, and absorbents. This review summarizes currently scattered aspects of NCG formation, properties, characterization, and applications. We describe the diversity of NCG building blocks, discuss the mechanisms of NCG formation, review characterization techniques, outline NCG fabrication and processing methods, and highlight most common NCG applications. The review is concluded with the discussion of perspectives in the design and development of NCGs.
Collapse
Affiliation(s)
- Sofia M Morozova
- N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, 105005, Moscow, Russia
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Albert Gevorkian
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College street, Toronto, Ontario M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Gohari G, Panahirad S, Mohammadi A, Kulak M, Dadpour MR, Lighvan ZM, Sharifi S, Eftekhari-Sis B, Szafert S, Fotopoulos V, Akbari A. Characterization of Octa-aminopropyl polyhedral oligomeric silsesquioxanes (OA-POSS) nanoparticles and their effect on sweet basil (Ocimum basilicum L.) response to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:89-102. [PMID: 36706695 DOI: 10.1016/j.plaphy.2023.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Salt stress is of the most detrimental abiotic stress factors on either crop or non-crop species. Of the strategies employed to boost the performance of the plants against harmful impacts of salt stress; application of novel nano-engineered particles have recently gained great attention as a promising tool. Octa-aminopropyl polyhedral oligomeric silsesquioxanes nanoparticles (OA-POSS NPs) were synthesized and then a foliar-application of OA-POSS NPs were carried out on sweet basil plants subjected to the salt stress. In that context, interactive effects of OA-POSS NPs (25, 50 and 100 mg L-1) and salinity stress (50 and 100 mM NaCl) were assayed by estimating a series of agronomic, physiological, biochemical and analytical parameters. OA-POSS NPs decreased the harmful effects of salinity by increasing photosynthetic pigment content, adjusting chlorophyll fluorescence, and triggering non-enzymatic (phenolic content) and enzymatic antioxidant components. The findings suggested that 25 mg L-1 OA-POSS NPs is the optimum concentration for sweet basil grown under salt stress. Considering the essential oil profile, estragole was the predominant compound with a percentage higher than 50% depending on the treatment. In comparison to the control group, 50 mM NaCl did not significantly affect estragole content, whilst 100 mM NaCl caused a substantial increase in estragole content. Regarding OA-POSS NPs treatments, increments by 16.8%, 11.8% and 17.5% were observed following application with 25, 50 and 100 mg L-1, respectively. Taken together, the current study provides evidence that POSS NPs can be employed as novel, 'green' growth promoting agents in combating salt stress in sweet basil.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkiye
| | - Mohamad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zohreh Mehri Lighvan
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot Curie 14, 50383 Wrocław, Poland
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Contribution Evaluation of Physical Hole Structure, Hydrogen Bond, and Electrostatic Attraction on Dye Adsorption through Individual Experiments. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4596086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disagreements over various unanswered questions about contribution of the adsorption process and functional groups on dye adsorption still exist. The main aim of this research was to evaluate the contributions of physical hole structure, hydrogen bond, and electrostatic attraction on dye adsorption. Three ideal representatives, namely, a sponge with porous structure, P(AM) containing -CONH2 groups, and P(AANa/AM) containing -COONa groups, were chosen to evaluate the above contributions. The methylene blue (MB) removal rates of these three products were compared through individual experiments. The results revealed that physical hole structure did not play a role in decreasing dye concentration. Hydrogen bond existed in dye adsorption but did not remarkably reduce dye concentration. The excellent removal results of P(AANa/AM) demonstrated that electrostatic attraction was critical in enriching dye contaminants from the solution into solid adsorbent. The results could provide insights into the dye adsorption mechanisms for further research.
Collapse
|
7
|
Pourjalili N, Bagheri Marandi G, Kurdtabar M, Rezanejade Bardajee G. Synthesis and characterization of a novel double network hydrogel based on gellan‐gum crosslinked by octavinyl polyhedral oligomeric silsesquioxane for heavy metal removal. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Navid Pourjalili
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| | | | - Mehran Kurdtabar
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| | | |
Collapse
|
8
|
Shahzadi S, Sher M, Aamir M, Bhatti MH, Yunus U. Synthesis of Hybrid POSS based Heterogeneous Catalysts for N-Alkylation of Amines with Alcohols. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Shafiei-Irannejad V, Rahimkhoei V, Molaparast M, Akbari A. Synthesis and characterization of novel hybrid nanomaterials based on β-cyclodextrine grafted halloysite nanotubes for delivery of doxorubicin to MCF-7 cell line. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Preparation and application of poly(α-L-lysine)-based interpenetrating network hydrogel via synchronous free-radical polymerization and amine-anhydride reaction in water. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Liu YX, Zhong H, Li XR, Bao ZL, Cheng ZP, Zhang YJ, Li CX. Fabrication of attapulgite-based dual responsive composite hydrogel and its efficient adsorption for methyl violet. ENVIRONMENTAL TECHNOLOGY 2022; 43:1480-1492. [PMID: 33070707 DOI: 10.1080/09593330.2020.1838623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In this work, attapulgite (ATP)-based dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) composite hydrogel, P(NIPAM-co-AA)/ATP, was prepared by free radical polymerization. The prepared composite hydrogel was characterized via methods of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta potential analysis and Brunauer, Emmett, and Teller (BET) etc. The composite hydrogel showed pH and temperature sensitive behaviour, with lower critical solution temperature (LCST) of 35°C and highest swelling occurred at pH 8.0. The adsorption of methyl violet (MV) can be controlled by the hydrogel responsiveness, and 95.78% of MV can be removed at pH 8.0 and 35°C. The addition of a small amount of ATP (3 Wt%) can improve the swelling ratio and adsorption capacity. Kinetic analysis demonstrated that the experimental data were best fitted to the pseudo-second order model. Isotherm analysis showed that the equilibrium data followed Langmuir model with the adsorption capacity of 168.35 mg g-1. In addition, the composite hydrogel has high adsorption selectivity for cationic dyes, and MV-loaded hydrogel is easy to regenerate, which can be used for successive adsorption cycles. These results demonstrate that the composite hydrogel has potential application in dye wastewater treatment.
Collapse
Affiliation(s)
- Yi-Xin Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Hui Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Xiao-Rong Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhuan-Li Bao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhi-Peng Cheng
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Yu-Jie Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Chun-Xiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
12
|
Sayed MA, Aly HF, Mahmoud HH, Abdelwahab SM, Helal AFI, Wilson LD. Synthesis and characterization of hausmannite ‐ activated carbon nanocomposites for removal of lead from aqueous solutions. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Moubarak A. Sayed
- Nuclear Research Center, Central Laboratory for Elemental and Isotopic Analysis Egyptian Atomic Energy Authority Cairo 13759 Egypt
- Hot Laboratories Center Egyptian Atomic Energy Authority Cairo 13759 Egypt
| | - Hisham F. Aly
- Hot Laboratories Center Egyptian Atomic Energy Authority Cairo 13759 Egypt
| | - Hazem H. Mahmoud
- Nuclear Research Center, Central Laboratory for Elemental and Isotopic Analysis Egyptian Atomic Energy Authority Cairo 13759 Egypt
- Nuclear Research Center, Radioisotope Department Egyptian Atomic Energy Authority Cairo 13759 Egypt
| | - Saad M. Abdelwahab
- Faculty of Science, Chemistry Department Ain-shams University Cairo 11566 Egypt
| | - Abdel-Fattah I. Helal
- Nuclear Research Center, Central Laboratory for Elemental and Isotopic Analysis Egyptian Atomic Energy Authority Cairo 13759 Egypt
| | - Lee D. Wilson
- Department of Chemistry University of Saskatchewan 110 Science Place Saskatoon S7N5C9 Canada Saskatchewan
| |
Collapse
|
13
|
Chen Z, Song X, Soh WWM, Wen Y, Zhu J, Zhang M, Li J. In Situ Synthesis of Magnetic Poly(DMAEAB-co-NIPAm)@Fe 3O 4 Composite Hydrogel for Removal of Dye from Water. Gels 2021; 7:201. [PMID: 34842702 PMCID: PMC8628751 DOI: 10.3390/gels7040201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Water pollution by toxic substances, such as dye molecules, remains a major environmental problem that needs to be solved. In the present work, the magnetic composite hydrogel based on the poly(2-(methacryloyloxy)-N-(2-hydroxyethyl)-N,N-dimethylethan-1-aminium bromide-co-N-isopropylacrylamide) copolymer with incorporated Fe3O4 particles ((poly(DMAEAB-co-NIPAm)@Fe3O4)) was prepared by an in situ synthesis technique for the efficient removal of dye molecules from water. The successfully synthesized magnetic hydrogel was characterized by FTIR, XRD, TGA, and TEM. The removal efficiency of the anionic dye bromophenol blue (BPB) and the cationic dye rhodamine B (RDM) by the prepared hydrogel adsorbents was evaluated. Various adsorption parameters, including the concentration of adsorbents and adsorption time, were also investigated. The results showed that the synthesized magnetic hydrogel had excellent BPB removal performance compared to the removal of RDM. The optimum adsorbent concentration for 0.5 mM BPB solution was approximately 0.5 g/L, and the removal efficiency was more than 99%. The kinetics data of BPB removal fitted well into the pseudo-2nd-order model, indicating that BPB dye adsorption involves chemical adsorption and physical adsorption. In addition, recycling studies were conducted to examine the reusability of the magnetic hydrogel for BPB removal for up to five cycles and the hydrogel could be reused without losing its high removal efficiency. The magnetic hydrogel poly(DMAEAB-co-NIPAm)@Fe3O4 with high removal efficiency, good selectivity, and reusability shows great potential for the removal of anionic dyes in wastewater treatment.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Wilson Wee Mia Soh
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Miao Zhang
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| |
Collapse
|
14
|
Zhang B, Guo B, Tong Y, Chen X, Bi S, Jin Y, Tian M. Synergistic effect of polyhedral oligomeric semisiloxane and boronate affinity molecularly imprinted polymer in a solid-phase extraction system for selective enrichment of ovalbumin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
|
16
|
Highly efficient and rapid adsorption of methylene blue dye onto vinyl hybrid silica nano-cross-linked nanocomposite hydrogel. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Liu S, Guo R, Li C, Lu C, Yang G, Wang F, Nie J, Ma C, Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Wang Z, Zhou W, Zhu L. Mono-/competitive adsorption of cadmium(II) and lead(II) using straw/bentonite-g-poly(acrylic acid-co-acrylamide) resin. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02939-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Dan S, Banivaheb S, Hashemipour H, kalantari M. Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03190-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Akbari A, Naderahmadian A, Eftekhari-Sis B. Silver and copper nanoparticles stabilized on ionic liquids-functionalized polyhedral oligomeric silsesquioxane (POSS): Highly active and recyclable hybrid catalysts. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Amini M, Naslhajian H, Akbari A, Farnia SMF, Jabbari E, Gautam S, Chae KH. A novel high-flux, thin-film composite desalination membrane via co-deposition of multifunctional polyhedral oligomeric silsesquioxane and polyoxometalate. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Wang N, Xiao W, Niu B, Duan W, Zhou L, Zheng Y. Highly efficient adsorption of fluoroquinolone antibiotics using chitosan derived granular hydrogel with 3D structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Bahrami Z, Akbari A, Eftekhari-Sis B. Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: Swelling, dye removal and mechanical properties. Int J Biol Macromol 2019; 129:187-197. [DOI: 10.1016/j.ijbiomac.2019.02.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
|
24
|
Akbari A, Arsalani N, Eftekhari-Sis B, Amini M, Gohari G, Jabbari E. Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-018-1784-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Dai H, Zhang H, Ma L, Zhou H, Yu Y, Guo T, Zhang Y, Huang H. Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydr Polym 2019; 209:51-61. [DOI: 10.1016/j.carbpol.2019.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
|
26
|
Arsalani N, Kazeminava F, Akbari A, Hamishehkar H, Jabbari E, Kafil HS. Synthesis of polyhedral oligomeric silsesquioxane nano‐crosslinked poly(ethylene glycol)‐based hybrid hydrogels for drug delivery and antibacterial activity. POLYM INT 2018. [DOI: 10.1002/pi.5748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Fahimeh Kazeminava
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Ali Akbari
- Department of ChemistryUniversity of Maragheh Maragheh Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Esmaiel Jabbari
- Department of Chemical EngineeringUniversity of South Carolina Columbia SC USA
| | - Hossein S Kafil
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
27
|
Preparation and Properties of High Hardness Ultraviolet Curable Polyethylene Terephthalates Surface Coatings Modified with Octavinyl-Polyhedral Oligomeric Silsesquioxane. COATINGS 2018. [DOI: 10.3390/coatings8110411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using organic coatings helps to protect PET (polyethylene terephthalates) surfaces, improve surface hardness, scratch resistance, and solvent resistance, prolong the service life of PET film, and to expand their scope of applications. There were some disadvantages, including poor flexibility and impact resistance in high-hardness coatings; organic coatings should also be modified to improve the toughness. Herein, a UV (ultraviolet curing) curable high-hardness organic coating used in PET surface protection was prepared and modified with inorganic nanoparticles, such as OVPOSS (octavinyl-polyhedral oligomeric silsesquioxane). The effects of the categories of nanoparticles on the coating performance were studied. UV-Vis spectra (ultraviolet visible light spectra), FT-IR (Fourier transform infrared spectrometer), TGA (thermogravimetric analysis), DMA (dynamic-mechanical), SEM (field emission scanning electron microscope), and AFM (atomic force microscope) were used to characterize the properties of the coatings. The results showed that the addition of eight-vinyl POSS to the organic coating significantly increased its glass transition temperature (Tg) from 100 to 120 °C, improved its storage modulus from 167.6 MPa to 258.9 MPa, and raised its impact resistance and flexibility. The SEM and AFM images displayed that the eight-vinyl POSS particles were dispersed homogeneously in the coating, arranged in an ordered network, and had good compatibility with organic components. The film displayed excellent properties, including 4 H of the pencil hardness, 100 g cm of impact resistance, excellent flexibility, and 90% of light transmittance, with the addition of 0.3 wt % OVPOSS. TGA analysis revealed that the coating had good thermal stability, with 5% weight loss temperature up to 335 °C.
Collapse
|
28
|
Synthesis of polyaniline/lignosulfonate for highly efficient removal of acid red 94 from aqueous solution. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2586-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|