1
|
Zhang X, Li Y, Zhang Y, Wang S, Zhao J, Wang T. Glutathione depletion-based pH-responsive injectable hydrogels for synergistic treatment of colon tumor. Int J Biol Macromol 2025; 297:139557. [PMID: 39778829 DOI: 10.1016/j.ijbiomac.2025.139557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
In this paper, a pH-sensitive chitosan-grafted phenylboronic acid (CS-BA)/polyvinyl alcohol (PVA) hydrogel was constructed based on dynamic borate bonding for loading chemotherapeutic drug cisplatin (CDDP) and divalent Cu2+ (CS-BA/PVA-Cu2+-CDDP). The hydrogel can respond and degrade specifically in the simulative acidic tumor microenvironment (TME), and the released Cu2+ can deplete glutathione (GSH) in tumor cells and generate Cu+. It is worth noting that, Cu+ can further catalyze the Fenton-like reaction to generate cancer cell-toxic hydroxyl radicals (OH•). More importantly, the depletion of GSH resulted in a reduction of the CDDP-GSH binding, allowing a fast CDDP release within the tumor cells, which significantly enhanced its anti-tumor efficacy. Meanwhile, the significantly reduced GSH can also protect the generated OH• from removal and enhance its therapeutic effect. In vitro antitumor experiments demonstrated that the CS-BA/PVA-Cu2+-CDDP hydrogel has excellent biosafety and synergistic chemotherapy/chemodynamic therapy (CDT) to inhibit tumor growth. Organoid experiments further demonstrated that CDDP and Cu2+ encapsulated in the hydrogel enhanced their therapeutic efficacy. This study reveals the potential application of CDDP and Cu2+ in the combined therapy of colon cancer.
Collapse
Affiliation(s)
- Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Yu Li
- The Third Affiliated Hospital of Naval Medical University, No. 225 Changhai Road, Shanghai 200433, PR China
| | - Yanhui Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Tianjiao Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| |
Collapse
|
2
|
Sajjadi M, Nasrollahzadeh M, Ghafuri H. Functionalized chitosan-inspired (nano)materials containing sulfonic acid groups: Synthesis and application. Carbohydr Polym 2024; 343:122443. [PMID: 39174086 DOI: 10.1016/j.carbpol.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers. The most abundantly available and cost-effective functionalized CS-inspired (nano)materials are considerably valuable in terms of the economic aspects of production of (nano)catalysts, (nano)hydrogels, (nano)composite/blend membranes, and thus their commercialization. In this respect, the preparation of functionalized CS-inspired (nano)materials containing -SO3H groups has been represented as a valid alternative to the homogenous unmodified biomaterials for various applications. Sulfonated derivatives of CS-inspired (nano)materials may possess huge surface areas, catalytic activity, adsorption, and biological/biomedical properties. This review article is aimed at the investigation of different methods and potential applications of sulfonated CS-inspired (nano)materials in catalysis, fuel cells, adsorption of ions, membranes, and biological applications.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Maiti S, Maji B, Badwaik H, Pandey MM, Lakra P, Yadav H. Oxidized ionic polysaccharide hydrogels: Review on derived scaffolds characteristics and tissue engineering applications. Int J Biol Macromol 2024; 280:136089. [PMID: 39357721 DOI: 10.1016/j.ijbiomac.2024.136089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Polysaccharide-based hydrogels have gained prominence due to their non-toxicity, biocompatibility, and structural adaptability for constructing tissue engineering scaffolds. Polysaccharide crosslinking is necessary for hydrogel stability in vivo. The periodate oxidation enables the modification of native polysaccharide characteristics for wound healing and tissue engineering applications. It produces dialdehydes, which are used to crosslink biocompatible amine-containing macromolecules such as chitosan, gelatin, adipic acid dihydrazide, silk fibroin, and peptides via imine/hydrazone linkages. Crosslinked oxidized ionic polysaccharide hydrogels have been studied for wound healing, cardiac and liver tissue engineering, bone, cartilage, corneal tissue regeneration, abdominal wall repair, nucleus pulposus regeneration, and osteoarthritis. Several modified hydrogel systems have been synthesized using antibiotics and inorganic substances to improve porosity, mechanical and viscoelastic properties, desired swelling propensity, and antibacterial efficacy. Thus, the injectable hydrogels provide a host-tissue-mimetic environment with high cell adhesion and viability, making them appropriate for scarless wound healing and tissue engineering applications. This review describes the oxidation procedure for alginate, hyaluronic acid, gellan gum, pectin, xanthan gum and chitosan, as well as the characteristics of the resulting materials. Furthermore, a critical review of scientific advances in wound healing and tissue engineering applications has been provided.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, Chhattisgarh, India
| | - Murali Monohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Preeti Lakra
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
4
|
Liang F, Liu C, Geng J, Chen N, Lai W, Mo H, Liu K. Chitosan-fucoidan encapsulating cinnamaldehyde composite coating films: Preparation, pH-responsive release, antibacterial activity and preservation for litchi. Carbohydr Polym 2024; 333:121968. [PMID: 38494223 DOI: 10.1016/j.carbpol.2024.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
In this study, an edible composite film with pH-responsive release was prepared by the formation of Schiff-base imine bonds between chitosan (CS) and oxidized fucoidan (CS-FU) and encapsulating cinnamaldehyde (CA). Fourier-transform infrared, 1H nuclear magnetic resonance, X-ray photoelectron spectroscopy and gel permeation chromatography confirmed the formation of CS-FU. The result showed that, oxidation degree of FU, degrees of substitution, average molecular weight and yield of CS-FU were 25.57 %, 10.48 %, 23.3094 kDa and 45.63 ± 0.64 %, respectively. Scanning electron microscopy revealed that CA was encapsulated within the CS-FU matrix. Increasing the CA content could improve the mechanical properties and ultraviolet and visible-light resistances of the CS-FU coating films but enhance their water vapor permeabilities. The release of CA increased as the pH decreased, and the antibacterial rate at pH 5 was 2.3-fold higher than that at pH 7, indicating good pH-responsive release and antibacterial properties in mildly acidic environments. Owing to their excellent properties, the CA/CS-FU-0.1 coating films maintained the appearance and quality indices of litchis for at least eight days. Hence, multifunctional composite coating films are prospective eco-friendly and intelligently responsive controlled-release packaging materials for fruit preservation.
Collapse
Affiliation(s)
- Fengyan Liang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Chusi Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jinwen Geng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Nachuan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Weida Lai
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Haitong Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
5
|
Du H, Gao F, Yang S, Zhu H, Cheng C, Peng F, Zhang W, Zheng Z, Wang X, Yang Y, Hou W. Oxidized of chitosan with different molecular weights for potential antifungal and plant growth regulator applications. Int J Biol Macromol 2023; 253:126862. [PMID: 37703971 DOI: 10.1016/j.ijbiomac.2023.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The application of Chitosan (CS) in drug delivery systems, plant growth promotion, antibacterial potentiality and plant defense is significantly limited by its inability to dissolve in neutral solutions. In this work, CS with different molecular weights (Mw) has been oxidized, yielding five kinds of oxidized chitosan (OCS 1-5) with solubilities in neutral solutions. The results obtained from Fourier Transform Infrared Spectroscopy clearly showed the successful oxidation of the hydroxyl group to form aldehyde and carboxyl groups. And the CS derivatives showed the wrinkled and lamellar structures on the surface of OCS. The results of antifungal activity against Fusarium graminearum showed that the OCS dissolved in 2 % (V/V) acetic acid exhibited better performance of almost complete inhibition of mycelial growth compared with CS at the concentration of 500 μg/mL. Among the five OCS, OCS-4 exhibited the best antifungal effect and had the lowest EC50 value of 581.68 μg/mL in samples. OCS-4 displayed superior promoting effect on seed germination with a germination potential of 62.2 % at a concentration of 3 g/L and a germination rate of 74.5 %. Additionally, the other four OCS also showed excellent antifungal activity with dose-dependent manners. These results indicated that the OCS had excellent antifungal potential in agricultural production.
Collapse
Affiliation(s)
- Haoyang Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Fengkun Gao
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Hongxia Zhu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Caihong Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Wenjing Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Zhe Zheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Wenlong Hou
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| |
Collapse
|
6
|
Li L, Liang F, Li C, Hou T, Xu DA. Antibacterial Mechanism of Chitosan-Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus. Mar Drugs 2022; 20:702. [PMID: 36355025 PMCID: PMC9697162 DOI: 10.3390/md20110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2025] Open
Abstract
To explore the application of chitosan-gentamicin conjugate (CS-GT) in inhibiting Vibrio parahaemolyticus (V. parahaemolyticus), which is an important pathogen in aquatic animals worldwide, the antimicrobial activity of CS-GT and the effects of a CS-GT dose on the intestine histopathology and intestinal flora of V. parahaemolyticus-infected shrimps were explored. The results showed that CS-GT possessed broad-spectrum antibacterial activity, with minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and half inhibitory concentration (IC50) of 20.00 ± 0.01, 75.00 ± 0.02 and 18.72 ± 3.17 μg/mL for V. parahaemolyticus, respectively. Further scanning electron microscope and cell membrane damage analyses displayed that the electrostatic interaction of CS-GT with cell membrane strengthened after CS grafted GT, resulting in leakage of nucleic acid and electrolytes of V. parahaemolyticus. On the other hand, histopathology investigation indicated that high (100 mg/kg) and medium (50 mg/kg) doses of CS-GT could alleviate the injury of a shrimp's intestine caused by V. parahaemolyticus. Further 16S rRNA gene sequencing analysis found high and medium dose of CS-GT could effectively inhabit V. parahaemolyticus invasion and reduce intestinal dysfunction. In conclusion, CS-GT possesses good antibacterial activity and could protect shrimps from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Lefan Li
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fengyan Liang
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
- Life Science &Technology School, LingNan Normal University, Zhanjiang 524048, China
- Mangrove Institute, LingNan Normal University, Zhanjiang 524048, China
| | - Chengpeng Li
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tingting Hou
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dong-an Xu
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Abdel-Hakeem MA, Abdel Maksoud AI, Aladhadh MA, Almuryif KA, Elsanhoty RM, Elebeedy D. Gentamicin-Ascorbic Acid Encapsulated in Chitosan Nanoparticles Improved In Vitro Antimicrobial Activity and Minimized Cytotoxicity. Antibiotics (Basel) 2022; 11:1530. [PMID: 36358185 PMCID: PMC9686670 DOI: 10.3390/antibiotics11111530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 12/16/2024] Open
Abstract
Nano-drug delivery is a promising tactic to enhance the activity and minimize the cytotoxicity of antimicrobial drugs. In the current study, chitosan nanoparticles (CSNPs) were used as a carrier for the delivery of gentamicin sulfate (GM) and ascorbic acid (AA). The particles were synthesized by ionotropic gelation method and characterized by FT-IR, Zeta potential, and transmission electron microscope imaging. The obtained particles were evaluated for their in vitro antimicrobial activity and cytotoxicity. The prepared particles (GM-AA-CSNPs) under the optimal condition of 4:1:1 of chitosan to drug ratio showed encapsulation efficiency and loading capacities of 89% and 22%, respectively. Regarding biological activities, GM-AA-CSNPs showed a lower minimum inhibitory concentration (MIC) than free gentamicin sulfate and GMCSNPs mixture without presenting cytotoxicity against normal cells (HSF). Moreover, the GM-AA-CSNPs did not exhibit hemolytic activity. These results highlight that the GM-AA-CSNPs are confirmed as a hopeful formula for future investigations on the development of antimicrobial preparations.
Collapse
Affiliation(s)
- Mohamed A. Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, MISR University for Science and Technology, Giza 3236101, Egypt
| | - Ahmed I. Abdel Maksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, MISR University for Science and Technology, Giza 3236101, Egypt
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Abdullah Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Rafaat M. Elsanhoty
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Dalia Elebeedy
- Department of Pharmaceutical Biotechnology, College of Biotechnology, MISR University for Science and Technology, Giza 3236101, Egypt
| |
Collapse
|
8
|
Solid phase synthesis of oxidized sodium alginate-tobramycin conjugate and its application for infected wound healing. Carbohydr Polym 2022; 295:119843. [PMID: 35988976 DOI: 10.1016/j.carbpol.2022.119843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Although sodium alginate possesses excellent biocompatibility, moisture retention and easy availability, it cannot be directly applied for infected wound treatment. Herein, a solid phase synthesis strategy was proposed to fabricate oxidized sodium alginate-tobramycin conjugate (OSA-TOB) for anti-infection dressing development. 13C nuclear magnetic resonance spectra indicated that the oxidization process does not change the ratio of β-D-mannuronic acid (M) / α-L-guluronic acid (G) in OSA and the oxidization reaction shows no stereoselectivity. Elemental analysis disclosed that the graft ratio of tobramycin in OSA-TOB is 13.8 %. Antibacterial test indicated that OSA-TOB can effectively inhibit four prevalent pathogenic bacterial S.epidermidis, P. aeruginosa, S. aureus and E. coli via a different antibacterial mechanism compared to the original TOB. Hemolysis and cytotoxicity assays shown that OSA-TOB have superior hemocompatibility and cytocompatibility. Infected wound healing assay shown that the healing rate of OSA-TOB is the highest. Further analysis indicated that OSA-TOB can reduce the local inflammatory response, accelerate the form of epithelium and collagen deposition. In conclusions, OSA-TOB synthesized in solid phase can be potentially applied as a promising anti-infection wound dressing.
Collapse
|
9
|
Kumar D, Gautam A, Tripathi DK, Poluri KM, Kundu PP. Synthesis, characterization and biological influences of rifaximin loaded melanin/zinc oxide nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Fabrication of novel polysaccharide hybrid nanoliposomes containing citral for targeting MRSA-infected wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Hou T, Wen X, Xie L, Gu Q, Li C. Synthesis of Gentamicin-Immobilized Agar with Improved Antibacterial Activity. Polymers (Basel) 2022; 14:polym14152975. [PMID: 35893939 PMCID: PMC9330791 DOI: 10.3390/polym14152975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
To develop agar derivatives with good antibacterial activity and decreased gelling and melting temperatures, two agar–gentamycin conjugates with 9.20% and 12.68% gentamicin immobilized were fabricated by oxidation, Schiff base and reduction reaction, and characterized by a Fourier Transform Infrared Spectrometer, 1H nuclear magnetic resonance and an elemental analyzer. It was found that the modifications changed the intermolecular interactions, leading to decreased gelling and melting temperatures for the oxidized agar and slightly increased gelling and melting temperatures for agar–gentamycin conjugates. Further studies of antimicrobial properties showed that the two agar–gentamycin conjugates possessed good antibacterial activity, which was positively correlated with the dosage and the immobilization rate of gentamicin. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of agar–gentamycin conjugates with higher immobilization rates of gentamicin against Escherichia coli were 39.1 μg/mL and 156.2 μg/mL, respectively, and the MICs and MBCs against Staphylococcus aureus were 19.5 μg/mL and 78.1 μg/mL, respectively. A biofilm test indicated that certain concentrations of agar–gentamycin conjugate could effectively inhibit the biofilm formation of Escherichia coli and Staphylococcus aureus. In summary, agar–gentamycin conjugates possess good antibacterial activities and may be applied as a new kind of antibacterial material.
Collapse
|
12
|
Oxidized Chitosan-Tobramycin (OCS-TOB) Submicro-Fibers for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14061197. [PMID: 35745770 PMCID: PMC9227200 DOI: 10.3390/pharmaceutics14061197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (CS) is a biodegradable, biocompatible, and non-toxic natural amino-poly-saccharide with antibacterial ability, owing to its positively charged amino groups. However, the low charge density leads to poor antibacterial efficiency which cannot meet the biomedical application requirements. In this study, Tobramycin (TOB) was grafted onto the backbone of oxidized chitosan (OCS) to synthesize oxidized chitosan-tobramycin (OCS-TOB). FTIR, 1H NMR and elemental analysis results demonstrated that OCS-TOB was successfully synthesized. OCS-TOB/PEO composite fibrous materials were produced by a self-made centrifugal spinning machine. In vitro experiments showed that cells proliferated on the submicro-fibrous OCS-TOB/PEO of appropriate concentration, and the antibacterial ability of OCS-TOB was much improved, compared with pristine CS. The results demonstrated that OCS-TOB/PEO nanofibrous materials could potentially be used for biomedical applications.
Collapse
|
13
|
Tan W, Zhang J, Mi Y, Li Q, Guo Z. Synthesis and characterization of α-lipoic acid grafted chitosan derivatives with antioxidant activity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Liang F, Sun C, Li S, Hou T, Li C. Therapeutic effect and immune mechanism of chitosan-gentamicin conjugate on Pacific white shrimp (Litopenaeus vannamei) infected with Vibrio parahaemolyticus. Carbohydr Polym 2021; 269:118334. [PMID: 34294344 DOI: 10.1016/j.carbpol.2021.118334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Fengyan Liang
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China; Department of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengbo Sun
- Department of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sidong Li
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tingting Hou
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengpeng Li
- School of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
15
|
Lin M, Zou Q, Wang C, Zhang R, Li Y, Li T, Li Y. A new strategy to prepare n-HA/CS composite scaffolds with surface loading of CS microspheres. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mingyue Lin
- Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Chenxin Wang
- Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Rui Zhang
- Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Yufan Li
- Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Taihe Li
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Li Z, Mei S, Dong Y, She F, Li P, Li Y, Kong L. Multi-Functional Core-Shell Nanofibers for Wound Healing. NANOMATERIALS 2021; 11:nano11061546. [PMID: 34208135 PMCID: PMC8230886 DOI: 10.3390/nano11061546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Core-shell nanofibers have great potential for bio-medical applications such as wound healing dressings where multiple drugs and growth factors are expected to be delivered at different healing phases. Compared to monoaxial nanofibers, core-shell nanofibers can control the drug release profile easier, providing sustainable and effective drugs and growth factors for wound healing. However, it is challenging to produce core-shell structured nanofibers with a high production rate at low energy consumption. Co-axial centrifugal spinning is an alternative method to address the above limitations to produce core-shell nanofibers effectively. In this study, a co-axial centrifugal spinning device was designed and assembled to produce core-shell nanofibers for controlling the release rate of ibuprofen and hEGF in inflammation and proliferation phases during the wound healing process. Core-shell structured nanofibers were confirmed by TEM. This work demonstrated that the co-axial centrifugal spinning is a high productivity process that can produce materials with a 3D environment mimicking natural tissue scaffold, and the specific drug can be loaded into different layers to control the drug release rate to improve the drug efficiency and promote wound healing.
Collapse
Affiliation(s)
- Zhen Li
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China; (Z.L.); (Y.D.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Foshan 528000, China
| | - Shunqi Mei
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China; (Z.L.); (Y.D.)
- Correspondence: (S.M.); (L.K.)
| | - Yajie Dong
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China; (Z.L.); (Y.D.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
| | - Fenghua She
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
| | - Puwang Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Yongzhen Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China;
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
- Correspondence: (S.M.); (L.K.)
| |
Collapse
|
17
|
Tran PHL, Tran TTD. Current Film Coating Designs for Colon-Targeted Oral Delivery. Curr Med Chem 2021; 28:1957-1969. [PMID: 32496984 DOI: 10.2174/0929867327666200604170048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 11/22/2022]
Abstract
Colon-targeted oral delivery has recently attracted a substantial number of studies on both systemic and local treatments. Among approaches for colonic delivery, film coatings have been demonstrated as effective elements of the drug delivery systems because they can integrate multiple release strategies, such as pH-controlled release, time-controlled release and enzyme-triggered release. Moreover, coating layer modulations, natural film materials and nanoparticle coatings have been vigorously investigated with promising applications. This review aims to describe the primary approaches for improving drug delivery to the colon in the last decade. The outstanding importance of current developments in film coatings will advance dosage form designs and lead to the development of efficient colon-targeted oral delivery systems.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Kumar D, Kumar S, Kumar S, Rohatgi S, Kundu PP. Synthesis of rifaximin loaded chitosan-alginate core-shell nanoparticles (Rif@CS/Alg-NPs) for antibacterial applications. Int J Biol Macromol 2021; 183:962-971. [PMID: 33965483 DOI: 10.1016/j.ijbiomac.2021.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The present work aims to synthesize the rifaximin loaded chitosan-alginate core-shell nanoparticles (Rif@CS/Alg-NPs) for antibacterial applications. The core-shell nanoparticles (Rif@CS/Alg-NPs) were characterized by Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-rays diffraction (XRD) and zeta analyzer. The antibacterial activities of Rif@CS/Alg-NPs were investigated against three species of bacteria namely Escherichia coli (E. coli), Pseudomonas aeruginosa (PA) and Bacillus haynesii (BH). Rif@CS/Alg-NPs exhibited outstanding antibacterial activities against E. coli, P. aeroginosa and Bacillus haynesii (BH) with 24 mm, 30 mm and 34 mm zone of inhibitions, respectively. Cytotoxicity of Rif@CS/Alg-NPs was also evaluated against human lung adenocarcinoma cell line A549 and found to be nontoxic. The drug release behavior of Rif@CS/Alg-NPs was investigated at different pH levels and maximum drug release (80%) was achieved at pH (7.2). The drug release kinetic data followed the Higuchi (R2 = 0.9963) kinetic model, indicating the drug release from Rif@CS/Alg-NPs as a square root of time-dependent process and diffusion controlled. Current research provides a cost-effective and green approach toward the synthesis of Rif@CS/Alg-NPs for its antibacterial applications.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, India
| | - Sumit Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P., India
| | - Shailesh Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P., India
| | - Soma Rohatgi
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Patit P Kundu
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
19
|
Grafting of 18β-Glycyrrhetinic Acid and Sialic Acid onto Chitosan to Produce a New Amphipathic Chitosan Derivative: Synthesis, Characterization, and Cytotoxicity. Molecules 2021; 26:molecules26020452. [PMID: 33467083 PMCID: PMC7829902 DOI: 10.3390/molecules26020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18β-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18β-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 β-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.
Collapse
|
20
|
Ke P, Zeng D, Xu K, Cui J, Li X, Wang G. Preparation of Quaternary Ammonium Salt-Modified Chitosan Microspheres and Their Application in Dyeing Wastewater Treatment. ACS OMEGA 2020; 5:24700-24707. [PMID: 33015487 PMCID: PMC7528286 DOI: 10.1021/acsomega.0c03274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
An efficient adsorbent (a quaternary ammonium salt-modified chitosan microsphere, CTA-CSM) was synthesized via an emulsion cross-linking reaction between 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) and chitosan (CS). The adsorption efficiency of the CTA-CSM as an adsorbent was studied using methyl orange dye to evaluate its suitability for wastewater purification. The characterization results showed that the CTA groups were successfully grafted onto the CS microspheres, and the as-prepared CTA-CSM samples exhibited a smooth surface and good dispersibility. The modification of CTA on CTA-CSM significantly improved its ability to remove methyl orange dye. The adsorption process of methyl orange by CTA-CSM was well described by the Langmuir isotherm model and followed the pseudo-second-order kinetic model. Under the optimal conditions, the maximum removal rate (98.9%) and adsorption capacity (131.9 mg/g) of CTA-CSM was higher than those of other previous reports; its removal rate for methyl orange was still up to 87.4% after five recycles. Hence, CTA-CSM is a very promising material for practical dyeing wastewater purification.
Collapse
Affiliation(s)
- Ping Ke
- The State Key Laboratory of Refractories
and Metallurgy, Hubei Key Laboratory of Coal Conversion and New Carbon
Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Danlin Zeng
- The State Key Laboratory of Refractories
and Metallurgy, Hubei Key Laboratory of Coal Conversion and New Carbon
Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ke Xu
- The State Key Laboratory of Refractories
and Metallurgy, Hubei Key Laboratory of Coal Conversion and New Carbon
Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiawei Cui
- The State Key Laboratory of Refractories
and Metallurgy, Hubei Key Laboratory of Coal Conversion and New Carbon
Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xin Li
- The State Key Laboratory of Refractories
and Metallurgy, Hubei Key Laboratory of Coal Conversion and New Carbon
Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Guanghui Wang
- The State Key Laboratory of Refractories
and Metallurgy, Hubei Key Laboratory of Coal Conversion and New Carbon
Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
21
|
Effects of Chitosan-Gentamicin Conjugate Supplement on Non-Specific Immunity, Aquaculture Water, Intestinal Histology and Microbiota of Pacific White Shrimp ( Litopenaeus vannamei). Mar Drugs 2020; 18:md18080419. [PMID: 32785070 PMCID: PMC7460103 DOI: 10.3390/md18080419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
When the aquaculture water environment deteriorates or the temperature rises, shrimp are susceptible to viral or bacterial infections, causing a large number of deaths. This study comprehensively evaluated the effects of the oral administration of a chitosan-gentamicin conjugate (CS-GT) after Litopenaeus vannamei were infected with Vibrio parahaemolyticus, through nonspecific immunity parameter detection, intestinal morphology observation, and the assessment of microbial flora diversification by 16S rRNA gene sequencing. The results showed that the oral administration of CS-GT significantly increased total hemocyte counts and reduced hemocyte apoptosis in shrimp (p < 0.05). The parameters (including superoxide dismutase, glutathione peroxidase, glutathione, lysozyme, acid phosphatase, alkaline phosphatase, and phenoloxidase) were significantly increased (p < 0.05). The integrity of the intestinal epithelial cells and basement membrane were enhanced, which correspondingly alleviated intestinal injury. In terms of the microbiome, the abundances of Vibrio (Gram-negative bacteria and food-borne pathogens) in the water and gut were significantly reduced. The canonical correspondence analysis (CCA) showed that the abundances of Vibrio both in the water and gut were negatively correlated with CS-GT dosage. In conclusion, the oral administration of CS-GT can improve the immunity of shrimp against pathogenic bacteria and significantly reduce the relative abundances of Vibrio in aquaculture water and the gut of Litopenaeus vannamei.
Collapse
|
22
|
Chitosan-Gentamicin Conjugate Hydrogel Promoting Skin Scald Repair. Mar Drugs 2020; 18:md18050233. [PMID: 32365733 PMCID: PMC7281128 DOI: 10.3390/md18050233] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Our earlier research indicated that chitosan-gentamicin conjugate (CS-GT) possesses superior antimicrobial activity and good water solubility. To develop CS-GT-based scald dressings, the antibacterial properties of CS-GT were further studied, and the biosafety of CS-GT and the healing mechanism of CS-GT hydrogel was systematically explored in this article. It was found that cell viability shows a declined inclination with the prolonged culture time and the increased concentration of CS-GT. After three day’s culture, the cell viability could still remain at 79.72% when CS-GT concentration was as high as 1000 μg/mL. On the other hand, the hemolysis rate of CS-GT was lower than 5% when its concentration is 800 μg/mL. Therefore CS-GT has good cytocompatibility and hemocompatibility. A wound-healing experiment has shown that the skin healing rate of CS-GT hydrogel was the highest at 99.61%, followed by the positive control (wet burn ointment) 94.98%, GT hydrogel 87.50%, and matrix 77.39%. The blank control group, however, possessed the lowest healing rate of 75.45%. Further analysis indicated that CS-GT hydrogel could promote the synthesis of total protein (TP) in skin granulation tissue, resulting in the enhanced hydroxyproline (HYP) content, which facilitated collagen fibrogenesis, reduced cytokine expression in an inflammatory response, and, ultimately, accelerated wound healing. To sum up, CS-GT hydrogel is a promising scald dressing.
Collapse
|
23
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
24
|
Fabrication of trichlorovinylsilane-modified-chitosan film with enhanced solubility and antibacterial activity. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03056-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Chen S, Li C, Hou T, Cai Y, Liang L, Chen L, Li M. Polyhexamethylene guanidine functionalized chitosan nanofiber membrane with superior adsorption and antibacterial performances. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|