1
|
Schio AL, de Lima MS, Frassini R, Scariot FJ, Cemin F, Elois MA, Alvarez F, Michels AF, Fongaro G, Roesch-Ely M, Figueroa CA. Light, Copper, Action: Visible-Light Illumination Enhances Bactericidal Activity of Copper Particles. ACS Biomater Sci Eng 2024; 10:1808-1818. [PMID: 38411100 DOI: 10.1021/acsbiomaterials.3c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacteria are an old concern to human health, as they are responsible for nosocomial infections, and the number of antibiotic-resistant microorganisms keeps growing. Copper is known for its intrinsic biocidal properties, and therefore, it is a promising material to combat infections when added to surfaces. However, its biocidal properties in the presence of light illumination have not been fully explored, especially regarding the use of microsized particles since nanoparticles have taken over all fields of research and subjugated microparticles despite them being abundant and less expensive. Thus, the present work studied the bactericidal properties of metallic copper particles, in microscale (CuMPs) and nanoscale (CuNPs), in the absence of light and under white LED light illumination. The minimum bactericidal concentration (MBC) of CuMPs against Staphylococcus aureus that achieved a 6-log reduction was 5.0 and 2.5 mg mL-1 for assays conducted in the absence of light and under light illumination, respectively. Similar behavior was observed against Escherichia coli. The bactericidal activity under illumination provided a percentage increase in log reduction values of 65.2% for S. aureus and 166.7% for E. coli when compared to the assays under dark. This assay reproduced the testing CuNPs, which showed superior bactericidal activity since the concentration of 2.5 mg mL-1 promoted a 6-log reduction of both bacteria even under dark. Its superior bactericidal activity, which overcame the effect of illumination, was expected once the nanoscale facilitated the interaction of copper within the surface of bacteria. The results from MBC were supported by fluorescence microscopy and atomic absorption spectroscopy. Therefore, CuMPs and CuNPs proved to have size- and dose-dependent biocidal activity. However, we have shown that CuMPs photoactivity is competitive compared to that of CuNPs, allowing their application as a self-cleaning material for disinfection processes assisted by conventional light sources without additives to contain the spread of pathogens.
Collapse
Affiliation(s)
- Aline L Schio
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Michele S de Lima
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Rafaele Frassini
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Fernando Joel Scariot
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Felipe Cemin
- "Gleb Wataghin" Institute of Physics, State University of Campinas, Campinas 13083-859, São Paulo, Brazil
| | - Mariana A Elois
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Fernando Alvarez
- "Gleb Wataghin" Institute of Physics, State University of Campinas, Campinas 13083-859, São Paulo, Brazil
| | - Alexandre F Michels
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Mariana Roesch-Ely
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Carlos A Figueroa
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Jacukowicz-Sobala I, Kociołek-Balawejder E, Stanisławska E, Seniuk A, Paluch E, Wiglusz RJ, Dworniczek E. Biocidal activity of multifunctional cuprite-doped anion exchanger - Influence of bacteria type and medium composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164667. [PMID: 37286010 DOI: 10.1016/j.scitotenv.2023.164667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The study presents unconventional, bifunctional, heterogeneous antimicrobial agents - Cu2O-loaded anion exchangers. The synergetic effect of a cuprous oxide deposit and polymeric support with trimethyl ammonium groups was studied against the reference strains of Enterococcus faecalis ATCC 29212 and Pseudomonas aeruginosa ATCC 27853. Biological testing (minimum bactericidal concentration, MBC), time- and dose-dependent bactericidal effect (under different conditions - medium composition and static/dynamic culture) demonstrated promising antimicrobial activity and confirmed its multimode character. The standard values of MBC, for all studied hybrid polymers and bacteria, were similar (64-128 mg/mL). However, depending on the medium conditions, due to the copper release into the bulk solution, bacteria were actively killed even at much lower doses of the hybrid polymer (25 mg/mL) and low Cu(II) concentrations in solution (0.01 mg/L). Simultaneously, confocal microscopic studies confirmed the effective inhibition of bacterial adhesion and biofilm formation on their surface. The studies conducted under different conditions showed also the influence of the structure and physical properties of studied materials on the biocidal efficacy and an antimicrobial action mechanism was proposed that could be significantly affected by electrostatic interactions and copper release to the solution. Although the antibacterial activity was also dependent on various strategies of bacterial cell resistance to heavy metals present in the aqueous medium, the studied hybrid polymers are versatile and efficient biocidal agents against bacteria of both types, Gram-positive and Gram-negative. Therefore, they can be a convenient alternative for point-of-use water disinfection systems providing water quality in medical devices such as dental units, spa equipment, and aesthetic devices used in the cosmetic sector.
Collapse
Affiliation(s)
- Irena Jacukowicz-Sobala
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland.
| | | | - Ewa Stanisławska
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
3
|
Kociołek-Balawejder E, Stanisławska E, Mucha I, Ociński D, Jacukowicz-Sobala I. Multifunctional Composite Materials Based on Anion Exchangers Modified with Copper Compounds-A Review of Their Synthesis Methods, Characteristics and Applications. Polymers (Basel) 2023; 15:3606. [PMID: 37688232 PMCID: PMC10490266 DOI: 10.3390/polym15173606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
As copper and its compounds are of fundamental importance for the development of innovative materials, the synthesis of composites intended for water purification was undertaken in which submicron copper containing particles were dispersed within the matrix of a strongly basic anion exchanger, with a macroporous and gel-like structure. Due to their trimethylammonium functional groups, the host materials alone exhibited an affinity to anionic water contaminants and antimicrobial properties. The introduction of such particles as CuO, Cu2O, metallic Cu, CuO/FeO(OH), Cu4O3, Cu(OH)2, Cu4(OH)6SO4, Cu2(OH)3Cl increased these properties and demonstrated new properties. The composites were obtained unconventionally, in ambient conditions, using eco-friendly reagents. Alternative synthesis methods were compared and optimized, as a result of which a new group of hybrid ion exchangers was created (HIXs) containing 3.5-12.5 wt% of Cu. As the arrangement of the inorganic phase in the resin matrix was atypical, i.e., close to the surface of the beads, the obtained HIXs exhibited excellent kinetic properties in the process of oxidation and adsorption of As(III), as well as catalytic properties for the synthesis of triazoles via click reaction, and also antimicrobial properties in relation to Gram-positive Enterococcus faecalis and Gram-negative Pseudomonas aeruginosa and Escherichia coli, preventing biofilm formation. Using thermogravimetry, the effect of the inorganic phase on decomposition of the polymeric phase was evaluated for the first time and comprehensively, confirming the relationship and finding numerous regularities. It was also found that, depending on the oxidation state (CuO, Cu2O, Cu), copper-containing particles affected the textural properties of the polymeric phase endowing a tighter structure, limiting the porosity and reducing the affinity for water.
Collapse
Affiliation(s)
- Elżbieta Kociołek-Balawejder
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Ewa Stanisławska
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Daniel Ociński
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Irena Jacukowicz-Sobala
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| |
Collapse
|
4
|
Shao P, Xu P, Zhang L, Xue Y, Zhao X, Li Z, Li Q. Non-Chloride in Situ Preparation of Nano-Cuprous Oxide and Its Effect on Heat Resistance and Combustion Properties of Calcium Alginate. Polymers (Basel) 2019; 11:polym11111760. [PMID: 31717828 PMCID: PMC6918189 DOI: 10.3390/polym11111760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
With Cu2+ complexes as precursors, nano-cuprous oxide was prepared on a sodium alginate template excluded of Cl- and based on which the calcium alginate/nano-cuprous oxide hybrid materials were prepared by a Ca2+ crosslinking and freeze-drying process. The thermal degradation and combustion behavior of the materials were studied by related characterization techniques using pure calcium alginate as a comparison. The results show that the weight loss rate, heat release rate, peak heat release rate, total heat release rate and specific extinction area of the hybrid materials were remarkably lower than pure calcium alginate, and the flame-retardant performance was significantly improved. The experimental data indicates that nano-cuprous oxide formed a dense protective layer of copper oxide, calcium carbonate and carbon by lowering the initial degradation temperature of the polysaccharide chain during thermal degradation and catalytically dehydrating to char in the combustion process, and thereby can isolate combustible gases, increase carbon residual rates, and notably reduce heat release and smoke evacuation.
Collapse
Affiliation(s)
- Peiyuan Shao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Peng Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China
| | - Yun Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Zichao Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.L.); (Q.L.); Tel.: +86-532-8595-0705 (Q.L.)
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.L.); (Q.L.); Tel.: +86-532-8595-0705 (Q.L.)
| |
Collapse
|