1
|
Li H, Liu R, Li X, Xu K, Cao J. Root-inspired grafting of wood surfaces with hyperbranched polymers for enhanced interfacial adhesion with impregnated decorative paper. RSC Adv 2024; 14:38706-38720. [PMID: 39654920 PMCID: PMC11626439 DOI: 10.1039/d4ra07688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
A root-like waterborne hyperbranched polymer, synthesized from diethylenetriamine (DETA) and methyl acrylate (MA) monomers, was inspired by the effect of solidifying soil with tree roots. This polymer was then blended with aqueous isocyanate SK615, known as MD-HBP-NH2, to serve as a surface modifier for blockboards. The blockboards were treated with a modifier to enhance the interfacial adhesion with melamine-formaldehyde (MF) resin-impregnated decorative paper, thereby preventing surface cracks. The polycondensation reaction temperatures of the modifiers were compared. These results indicated that a hyperbranched root-structured polymer emulsion was formed through Michael addition reactions. Following this modification, the blockboards demonstrated enhanced planeness and dimensional stability. Furthermore, the isocyanate groups reacted with the exposed hydroxyl groups, and the amino groups reacted with the aldehyde groups in the MF resin, thereby enhancing the interfacial bonding strength between the wood and the impregnated decorative paper. At a polycondensation temperature of 155 °C, optimal overall performance was attained, with the ability to penetrate the wood surface to a depth of 1.28 mm, and exhibited superior surface crack resistance. Moreover, this waterborne hyperbranched polymer modifier is eco-friendly, green, and non-toxic, with lower levels of volatile organic compounds. This presents a promising avenue for the development of eco-friendly modifiers to prevent surface cracking in wood-based panels with impregnated decorative paper.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Technology, Beijing Key Laboratory of Wooden Material Science and Application, Beijing Forestry University Haidian Beijing 100083 China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry Haidian Beijing 100091 China
| | - Xinyu Li
- Guangdong Tianyuan Huibang New Materials Co., Ltd Foshan Guangdong 523000 China
| | - Kun Xu
- Guangdong Tianyuan Huibang New Materials Co., Ltd Foshan Guangdong 523000 China
| | - Jinzhen Cao
- School of Materials Science and Technology, Beijing Key Laboratory of Wooden Material Science and Application, Beijing Forestry University Haidian Beijing 100083 China
| |
Collapse
|
2
|
Khan M. Chemical and Physical Architecture of Macromolecular Gels for Fracturing Fluid Applications in the Oil and Gas Industry; Current Status, Challenges, and Prospects. Gels 2024; 10:338. [PMID: 38786255 PMCID: PMC11121287 DOI: 10.3390/gels10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; ; Tel.: +966-0138601671
- Interdisciplinary Research Center for Hydrogen Technologies and Energy Storage (IRC-HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Kamo Y, Matsumoto A. Control of Pore Sizes in Epoxy Monoliths and Applications as Sheet-Type Adhesives in Combination with Conventional Epoxy and Acrylic Adhesives. Molecules 2024; 29:2059. [PMID: 38731550 PMCID: PMC11085113 DOI: 10.3390/molecules29092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Materials with monolithic structures, such as epoxy monoliths, are used for a variety of applications, such as for column fillers in gas chromatography and HPLC, for separators in lithium-ion batteries, and for precursor polymers for monolith adhesion. In this study, we investigated the fabrication of epoxy monoliths using 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C) as the tetrafunctional epoxy and 4,4'-methylenebis(cyclohexylamine) (BACM) as the amine curing agent to control pore diameters using polyethylene glycols (PEGs) of differing molecular weights as the porogenic agents. We fabricated an epoxy monolith with micron-order pores and high strength levels, and which is suitable for the precursors of composite materials in cases where smaller PEGs are used. We discussed the effects of the porous structures of monoliths on their physical properties, such as tensile strength, elongation, elastic modulus, and glass transition temperatures. For example, epoxy monoliths prepared in the presence of PEGs exhibited an elastic modulus less than 1 GPa at room temperature and Tg values of 175-187 °C, while the epoxy bulk thermoset produced without any porogenic solvent showed a high elastic modulus as 1.8 GPa, which was maintained at high temperatures, and a high Tg of 223 °C. In addition, the unique adhesion characteristics of epoxy monolith sheets are revealed as a result of the combinations made with commercial epoxy and acrylic adhesives. Epoxy monoliths that are combined with conventional adhesives can function as sheet-type adhesives purposed with avoiding problems when only liquid-type adhesives are used.
Collapse
Affiliation(s)
- Yoshiyuki Kamo
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
4
|
He J, Lassila L, Garoushi S, Vallittu P. Tailoring the monomers to overcome the shortcomings of current dental resin composites - review. Biomater Investig Dent 2023; 10:2191621. [PMID: 37090482 PMCID: PMC10120559 DOI: 10.1080/26415275.2023.2191621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Dental resin composites (DRCs) have become the first choice among different restorative materials for direct anterior and posterior restorations in the clinic. Though the properties of DRCs have been improved greatly in recent years, they still have several shortcomings, such as volumetric shrinkage and shrinkage stress, biofilm development, lack of radio-opacity for some specific DRCs, and estrogenicity, which need to be overcome. The resin matrix, composed of different monomers, constitutes the continuous phase and determine the performance of DRCs. Thus, the chemical structure of the monomers plays an important role in modifying the properties of DRCs. Numerous researchers have taken to design and develop novel monomers with specific functions for the purpose of fulfilling the needs in dentistry. In this review, the development of monomers in DRCs were highlighted, especially focusing on strategies aimed at reducing volumetric shrinkage and shrinkage stress, endowing bacteriocidal and antibacterial adhesion activities as well as protein-repelling activity, increasing radio-opacity, and replacing Bis-GMA. The influences of these novel monomers on the properties of DRCs were also discussed.
Collapse
Affiliation(s)
- Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- CONTACT Jingwei He College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
5
|
Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers (Basel) 2022; 14:polym14245526. [PMID: 36559893 PMCID: PMC9787615 DOI: 10.3390/polym14245526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
This comprehensive review focuses on polyetheretherketone (PEEK), a synthetic thermoplastic polymer, for applications in dentistry. As a high-performance polymer, PEEK is intrinsically robust yet biocompatible, making it an ideal substitute for titanium-the current gold standard in dentistry. PEEK, however, is also inert due to its low surface energy and brings challenges when employed in dentistry. Inert PEEK often falls short of achieving a few critical requirements of clinical dental materials, such as adhesiveness, osseoconductivity, antibacterial properties, and resistance to tribocorrosion. This study aims to review these properties and explore the various surface modification strategies that enhance the performance of PEEK. Literatures searches were conducted on Google Scholar, Research Gate, and PubMed databases using PEEK, polyetheretherketone, osseointegration of PEEK, PEEK in dentistry, tribology of PEEK, surface modifications, dental applications, bonding strength, surface topography, adhesive in dentistry, and dental implant as keywords. Literature on the topics of surface modification to increase adhesiveness, tribology, and osseointegration of PEEK were included in the review. The unavailability of full texts was considered when excluding literature. Surface modifications via chemical strategies (such as sulfonation, plasma treatment, UV treatment, surface coating, surface polymerization, etc.) and/or physical approaches (such as sandblasting, laser treatment, accelerated neutral atom beam, layer-by-layer assembly, particle leaching, etc.) discussed in the literature are summarized and compared. Further, approaches such as the incorporation of bioactive materials, e.g., osteogenic agents, antibacterial agents, etc., to enhance the abovementioned desired properties are explored. This review presents surface modification as a critical and essential approach to enhance the biological performance of PEEK in dentistry by retaining its mechanical robustness.
Collapse
Affiliation(s)
- Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
- Collaborative Research Center for Biomedical Scaffolds, National Research and Innovation Agency of the Republic Indonesia and Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Vania Tanda Widyaya
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Prathima C. Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260-1900, USA
| | - Yogi Angga Swasono
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
- Correspondence:
| |
Collapse
|
6
|
Liang X, Li X, Tang Y, Zhang X, Wei W, Liu X. Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification. J Colloid Interface Sci 2021; 611:105-117. [PMID: 34933189 DOI: 10.1016/j.jcis.2021.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
Despite great efforts have been made on epoxy resins modification, development of additives that can be used to efficiently and universally modify epoxy composites remains a challenging task. Herein, graphene oxide (GO) sheets were covalently linked with hyperbranched epoxy resin (HBPEE-epoxy) to form HBPEE-epoxy functionalized GO (HPE-GO), which was then incorporated into epoxy resin (EP) matrix to achieve efficient and all-purpose enhancement of the properties of EPs. Compared with unmodified GO sheets, the functionalized HPE-GO sheets were better dispersed and exhibited better interfacial compatibility with the epoxy matrix, and consequently, the mechanical and thermal properties of HPE-GO/EP composites improved significantly compared to unmodified GO/EP composites. The tensile strength, flexural strength, impact strength, and fracture toughness (KIC) of EP composites containing 0.5 wt% HPE-GO increased by 65.0%, 36.2%, 259.1%, and 178.9%, respectively, compared with those for the neat EP. The storage modulus (E'), glass transition temperature (Tg), and thermal stability (T5%) also showed modest improvements. Furthermore, the HPE-GO/EP composites exhibited optimal thermal conductivities and thermal expansion properties, while maintaining higher volume resistivities compared with GO/EP composites. The results of this study support that HPE-GO is a promising, all-purpose modifier for EPs.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China.
| | - Yong Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiyu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
7
|
Lv J, Hu D, Ma W. UV
–thermal‐cured cycloaliphatic epoxy composites with enhanced mechanical properties via Ca
2+
‐modified nanocrystalline cellulose. POLYM INT 2021. [DOI: 10.1002/pi.6267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Lv
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| | - Dechao Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| | - Wenshi Ma
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| |
Collapse
|
8
|
Sun Q, Zhang L, Bai R, Zhuang Z, Zhang Y, Yu T, Peng L, Xin T, Chen S, Han B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers (Basel) 2021; 13:1590. [PMID: 34069312 PMCID: PMC8156482 DOI: 10.3390/polym13101590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Repairing tooth defects with dental resin composites is currently the most commonly used method due to their tooth-colored esthetics and photocuring properties. However, the higher than desirable failure rate and moderate service life are the biggest challenges the composites currently face. Secondary caries is one of the most common reasons leading to repair failure. Therefore, many attempts have been carried out on the development of a new generation of antimicrobial and therapeutic dental polymer composite materials to inhibit dental caries and prolong the lifespan of restorations. These new antimicrobial materials can inhibit the formation of biofilms, reduce acid production from bacteria and the occurrence of secondary caries. These results are encouraging and open the doors to future clinical studies on the therapeutic value of antimicrobial dental resin-based restoratives. However, antimicrobial resins still face challenges such as biocompatibility, drug resistance and uncontrolled release of antimicrobial agents. In the future, we should focus on the development of more efficient, durable and smart antimicrobial dental resins. This article focuses on the most recent 5 years of research, reviews the current antimicrobial strategies of composite resins, and introduces representative antimicrobial agents and their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | | | | | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| |
Collapse
|