1
|
Essifi K, Brahmi M, Boussetta A, Charii H, Ait Benhamou A, El Bachiri A, Salhi S, Brahmi R, Moubarik A, Tahani A. Synergistic enhancement of chlorophenols removal using eco-friendly alginate@montmorillonite hybrid bio-capsules: insights from encapsulation and kinetic release studies. J Microencapsul 2024; 41:601-619. [PMID: 39185665 DOI: 10.1080/02652048.2024.2395968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
This study investigates the synergistic effects of alginate@montmorillonite (Alg@Mt) hybrid microcapsules for enhancing water purification, focusing on improving the encapsulation of hydrophobic contaminants. Alg@Mt microcapsules were prepared through ionotropic gelation. Characterisation was performed using SEM-EDX, FTIR, XRD, and TGA. Encapsulation efficiency (EE), loading capacity (LC), and release behaviour were also examined. Alg@Mt microcapsules effectively removed phenol and its chlorinated derivatives from water. Incorporating Na-Mt improved structural and thermal properties, EE, and LC. Increasing the clay content to 60% (w/w) raised the EE of phenol and its more hydrophobic derivative, 2,4,6-trichlorophenol, from 39.74 ± 3.1% (w/w) and 63.91 ± 2% (w/w) to 60.56 ± 1.6% (w/w) and 82.28 ± 2.3% (w/w), respectively, with more controlled release rates, following Fickian diffusion mechanism. EE increased with phenolic substances hydrophobicity, while LC and release rates were inversely related. This approach is promising for removing hydrophobic contaminants from water.
Collapse
Affiliation(s)
- Kamal Essifi
- Coordination and Analytical Chemistry Laboratory, Faculty of Sciences, University of Chouaïb Doukkali, El Jadida, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Hassan Charii
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Anass Ait Benhamou
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ali El Bachiri
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Samira Salhi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Rachid Brahmi
- Coordination and Analytical Chemistry Laboratory, Faculty of Sciences, University of Chouaïb Doukkali, El Jadida, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| |
Collapse
|
2
|
Boškov IA, Savić IM, Grozdanić Stanisavljević NĐ, Kundaković-Vasović TD, Radović Selgrad JS, Savić Gajić IM. Stabilization of Black Locust Flower Extract via Encapsulation Using Alginate and Alginate-Chitosan Microparticles. Polymers (Basel) 2024; 16:688. [PMID: 38475369 DOI: 10.3390/polym16050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Black locust flower extract contains various polyphenols and their glucosides contribute to the potential health benefits. After intake of these bioactive compounds and passage through the gastrointestinal tract, their degradation can occur and lead to a loss of biological activity. To overcome this problem, the bioactive compounds should be protected from environmental conditions. This study aimed to encapsulate the black flower extract in the microparticles based on biodegradable polysaccharides, alginate, and chitosan. In the extract, the total antioxidant content was found to be 3.18 ± 0.01 g gallic acid equivalent per 100 g of dry weight. Also, the presence of lipids (16), phenolics (27), organic acids (4), L-aspartic acid derivative, questinol, gibberellic acid, sterol, and saponins (2) was confirmed using the UHPLC-ESI-MS analysis. In vitro assays showed that the extract has weak anti-α-glucosidase activity and moderate antioxidant and cytotoxic activity against the HeLa cell line. The extrusion method with secondary air flow enabled the preparation of microparticles (about 270 μm) encapsulated with extract. An encapsulation efficiency of over 92% was achieved in the alginate and alginate-chitosan microparticles. The swelling study confirmed a lower permeability of alginate-chitosan microparticles compared with alginate microparticles. For both types of microparticles, the release profile of antioxidants in the simulated gastrointestinal fluids at 37 °C followed the Korsmeyer-Peppas model. A lower diffusion coefficient than 0.5 indicated the simple Fick diffusion of antioxidants. The alginate-chitosan microparticles enabled a more sustained release of antioxidants from extract compared to the alginate microparticles. The obtained results indicated an improvement in the antioxidant activity of bioactive compounds from the extract and their protection from degradation in the simulated gastric conditions via encapsulation in the polymer matrixes. Alginate-chitosan showed slightly slower cumulative antioxidant release from microparticles and better antioxidant activity of the extract compared to the alginate system. According to these results, alginate-chitosan microparticles are more suitable for further application in the encapsulation of black locust flower extract. Also, the proposed polymer matrix as a drug delivery system is safe for human use due to its biodegradability and non-toxicity.
Collapse
Affiliation(s)
- Ivana A Boškov
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | - Ivan M Savić
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | | | - Tatjana D Kundaković-Vasović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena S Radović Selgrad
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ivana M Savić Gajić
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
3
|
Ebel FA, Liaudat AC, Blois DA, Capella V, Broglia MF, Barbero CA, Rodríguez N, Bosch P, Rivarola CR. Biointerfacial behavior of stallion spermatozoa adhered to hydrogel surfaces: Impact of the hydrogel chemical composition and the culture medium. Colloids Surf B Biointerfaces 2023; 231:113575. [PMID: 37832175 DOI: 10.1016/j.colsurfb.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Novel soft materials based on hydrogel are proposed to enhance the selection of high-quality stallion sperm based on their adhesion capacity. The hydrogel surfaces are derived from polyacrylamide (PAAm), which is copolymerized with neutral and ionic co-monomers to modify the interfacial properties. The hydrogels undergo characterization through FTIR spectroscopy, assessment of swelling capacity, and wettability under various experimental conditions. Sperm adhesion capacity on the hydrogels is examined through several parameters including the percentage of bound sperm (%Sp) to hydrogels, tail oscillation intensity and flagellar movement. The biointerfacial properties of sperm-hydrogel systems vary based on the chemical composition of hydrogel as well as the components present in the culture medium. High %Sp and excellent metabolic activity of the spermatozoa are observed on hydrogel surfaces that possess moderate hydrophilicity. Specifically, a cationic hydrogel in BGM3 culture medium and a neutral surface in BGM3 medium supplemented with BSA exhibit favorable outcomes. Scanning Electron Microscopy (SEM) reveals the normal morphology of the head and tail in spermatozoa adhered to the hydrogel. Therefore, these hydrogel surfaces are potential materials for selecting stallion sperm with high quality, and their application could be extended to the study of other mammalian reproductive cells.
Collapse
Affiliation(s)
- Francisca A Ebel
- Institute of Environmental Biotechnology and Health, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Ana C Liaudat
- Institute of Environmental Biotechnology and Health, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Damián A Blois
- Institute of Environmental Biotechnology and Health, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Virginia Capella
- Institute of Environmental Biotechnology and Health, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Martin F Broglia
- Research Institute in Energy Technologies and Advanced Materials, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Cesar A Barbero
- Research Institute in Energy Technologies and Advanced Materials, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Nancy Rodríguez
- Institute of Environmental Biotechnology and Health, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Pablo Bosch
- Institute of Environmental Biotechnology and Health, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina
| | - Claudia R Rivarola
- Research Institute in Energy Technologies and Advanced Materials, Faculty of Exact, Physicochemical and Natural Sciences, National University of Río Cuarto, National Route 36, KM. 601, 5800, Argentina.
| |
Collapse
|
4
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
5
|
Rashwan AK, Karim N, Xu Y, Hanafy NAN, Li B, Mehanni AHE, Taha EM, Chen W. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit Rev Food Sci Nutr 2022; 63:9731-9751. [PMID: 35522080 DOI: 10.1080/10408398.2022.2070906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Curcumin (CUR) is a natural hydrophobic compound, which is available in turmeric rhizome. It has several bioactivities including antioxidant, anti-obesity, anti-diabetic, cardioprotective, anti-inflammatory, antimicrobial, anticancer, and other activities. Despite its medical and biological benefits, it is using in limitations because of its hydrophobicity and sensitivity. These unfavorable conditions further reduced the bioavailability (BA) and biological efficacy of CUR. This review summarizes the stability and BA of free- and encapsulated-CUR, as well as comprehensively discusses the potential biological activity of CUR-loaded various micro-/nano-encapsulation systems. The stability and BA of CUR can be improved via loading in different encapsulation systems, including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nano-hydrogel, and others. Biopolymer-based nanoparticles (especially poly lactic-co-glycolic acid (PLGA), zein, and chitosan) and nano-gels are the best carriers for encapsulating and delivering CUR. Both delivery systems are suitable because of their excellent functional properties such as high encapsulation efficiency, well-stability against unfavorable conditions, and can be coated using other encapsulation systems. Based on available evidences, encapsulated-CUR exerted greater biological activities especially anticancer (breast cancer), antioxidant, antidiabetic, and neuroprotective effects.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Nemany A N Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Abul-Hamd E Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Eman M Taha
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
6
|
Exploration of a three-dimensional matrix as micro-reactor in the form of reactive polyaminosaccharide hydrogel beads using multipoint covalent interaction approach. Biotechnol Lett 2022; 44:299-319. [DOI: 10.1007/s10529-022-03223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
7
|
Stompor-Gorący M, Machaczka M. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Int J Mol Sci 2021; 22:ijms222312889. [PMID: 34884693 PMCID: PMC8657461 DOI: 10.3390/ijms222312889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023] Open
Abstract
Trans-ferulic acid (FA) is a derivative of 4-hydroxycinnamic acid, which is found in many food products, fruits and beverages. It has scientifically proven antioxidant, anti-inflammatory and antibacterial properties. However, its low ability to permeate through biological barriers (e.g., the blood-brain barrier, BBB), its low bioavailability and its fast elimination from the gastrointestinal tract after oral administration limit its clinical use, e.g., for the treatment of neurodegenerative diseases, such as Alzheimer's disease. Therefore, new nanotechnological approaches are developed in order to regulate intracellular transport of ferulic acid. The objective of this review is to summarize the last decade's research on biological properties of ferulic acid and innovative ways of its delivery, supporting pharmacological therapy.
Collapse
Affiliation(s)
- Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Kopisto 2a, 35-959 Rzeszów, Poland;
- Correspondence:
| | - Maciej Machaczka
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Kopisto 2a, 35-959 Rzeszów, Poland;
- Department of Clinical Science and Education, Division of Internal Medicine, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden
| |
Collapse
|
8
|
Jiang F, Chi Z, Ding Y, Quan M, Tian Y, Shi J, Song F, Liu C. Wound Dressing Hydrogel of Enteromorpha prolifera Polysaccharide-Polyacrylamide Composite: A Facile Transformation of Marine Blooming into Biomedical Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14530-14542. [PMID: 33729756 DOI: 10.1021/acsami.0c21543] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Great endeavors have been dedicated to the development of wound dressing materials. However, there is still a demand for developing a wound dressing hydrogel that integrates natural macromolecules without requiring extra chemical modifications, so as to enable a facile transformation and practical application in wound healing. Herein, a composite hydrogel was prepared with water-soluble polysaccharides from Enteromorpha prolifera (PEP) cross-linked with boric acid and polyacrylamide cross-linked via polymerization (PAM) using a one-pot method. The dual-network of this hydrogel enabled it to have an ultratough mechanical strength. Moreover, interfacial characterizations reflected that the hydrogen bonds and dynamic hydroxyl-borate bonds contributed to the self-healing ability of the PEP-PAM hydrogel, and the surface groups on the hydrogel allowed for tissue adhesiveness and natural antioxidant properties. Additionally, human epidermal growth factor-loaded PEP-PAM hydrogel promoted cell proliferation and migration in vitro and significantly accelerated wound healing in vivo on model rats. These progresses suggested a prospect for the PEP-PAM hydrogel as an effective and easily available wound dressing material. Remarkably, this work showcases that a wound dressing hydrogel can be facially developed by using natural polysaccharides as a one component and offers a new route for the high-value utilization of disastrous marine blooming biomass by transforming it into a biomedical material.
Collapse
Affiliation(s)
- Fei Jiang
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| | - Yuanyuan Ding
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| | - Meilin Quan
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| | - Jie Shi
- Qingdao Biotemed Biomaterials Co. Ltd. No. 168 Zhuzhou Road, Qingdao 266101, China
| | - Fulai Song
- Qingdao Biotemed Biomaterials Co. Ltd. No. 168 Zhuzhou Road, Qingdao 266101, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| |
Collapse
|