1
|
Ahmed HEH, Aliyev E, Alosmanov R, Soylak M. Separation and enrichment of Cd and Pb from food and water samples based on a graphene oxide-decorated poly 2-diethylaminoethyl methacrylate nanocomposite by dispersive micro-solid phase extraction (d-μ-SPE). Food Chem 2025; 465:142008. [PMID: 39550971 DOI: 10.1016/j.foodchem.2024.142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
In this study, a graphene oxide combined with poly(2-diethylaminoethyl methacrylate) (GO@PDEAEMA) nanocomposite was synthesized for the separation and enrichment of Cd and Pb from food and water samples using the dispersive micro-solid phase extraction (d-μ-SPE) technique. The GO@PDEAEMA nanocomposite was synthesized using surface-initiated atom transfer radical polymerization (SI-ATRP) and characterized using various analytical techniques, such as FTIR, FE-SEM, TGA, BET, and XRD. The optimal experimental conditions were pH 8, 0.5 M HNO₃ as eluent, 5 mg of sorbent, and adsorption/desorption times of 0.5 and 1 min, respectively, with a recovery range of 89-101 %. The suggested method showed low limits of detection (LOD) and quantification (LOQ) of 0.11 μg L-1 and 0.37 μg L-1 for Cd and 0.28 μg L-1 and 0.93 μg L-1 for Pb, respectively. The optimal procedure was successfully applied to real water and food samples. The study demonstrates the possibility of using GO@PDEAEMA nanocomposite as an effective sorbent for toxic metal extraction.
Collapse
Affiliation(s)
- Hassan Elzain Hassan Ahmed
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey; Sudan Atomic Energy Commission (SAEC) - Chemistry and Nuclear Physics Institute, Khartoum, Sudan; Sudan University of Science and Technology (SUST) - College of Science-Scientific Laboratories Department, Chemistry Section, Khartoum, Sudan; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Elvin Aliyev
- Centre for Fuel Cell and Hydrogen Research, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, United Kingdom
| | - Rasim Alosmanov
- Faculty of Chemistry, Baku State University, Z. Khalilov Str. 23, AZ1148, Baku, Azerbaijan
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
| |
Collapse
|
2
|
Zhang W, Tang H, Yan Y, Ma J, Ferro LM, Merces L, Karnaushenko DD, Karnaushenko D, Schmidt OG, Zhu M. Unlocking Micro-Origami Energy Storage. ACS APPLIED ENERGY MATERIALS 2024; 7:11256-11268. [PMID: 39734918 PMCID: PMC11672231 DOI: 10.1021/acsaem.4c00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 12/31/2024]
Abstract
Transforming thin films into high-order stacks has proven effective for robust energy storage in macroscopic configurations like cylindrical, prismatic, and pouch cells. However, the lack of tools at the submillimeter scales has hindered the creation of similar high-order stacks for micro- and nanoscale energy storage devices, a critical step toward autonomous intelligent microsystems. This Spotlight on Applications article presents recent advancements in micro-origami technology, focusing on shaping nano/micrometer-thick films into three-dimensional architectures to achieve folded or rolled structures for microscale energy storage devices. Micro-Swiss-rolls, created through a roll-up process actuated by inherent strain in multiple layer stacks, have been employed to develop on-chip microbatteries and microsupercapacitors with superior performance compared to their planar counterparts. The technology allows additional functionalities to be integrated into the same device using multifunctional materials. Despite significant progress, the key challenge for micro-origami technology in creating microscale energy storage devices lies in diversifying shape-morphing mechanisms to expand material choices, improve process reliability, and enhance reproducibility. Additionally, developing a universal microscale energy storage device that can cater to various tiny devices is intricate. Therefore, considering the integration of energy storage into final applications during the development phase is crucial. Micro-origami energy storage systems are poised to significantly impact the future of autonomous tiny devices, such as smart dust and microrobots.
Collapse
Affiliation(s)
- Wenlan Zhang
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Hongmei Tang
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Yaping Yan
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Jiachen Ma
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Letícia
M. M. Ferro
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Leandro Merces
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Dmitriy D. Karnaushenko
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Daniil Karnaushenko
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| | - Oliver G. Schmidt
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
- School
of Science, TU Dresden, 01069 Dresden, Germany
| | - Minshen Zhu
- Research
Center for Materials, Architectures and Integration of Nanomembranes
(MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
- Material
Systems for Nanoelectronics, TU Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
3
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
4
|
Zhang W, Zeng Y, Cai F, Wei H, Wu Y, Yu H. Facile preparation of interpenetrating network hydrogel adsorbent from starch- chitosan for effective removal of methylene blue in water. Int J Biol Macromol 2024; 277:134340. [PMID: 39094889 DOI: 10.1016/j.ijbiomac.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yin Zeng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Fengying Cai
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
5
|
Araque LM, Fernández de Luis R, Fidalgo-Marijuan A, Infantes-Molina A, Rodríguez-Castellón E, Pérez CJ, Copello GJ, Lázaro-Martínez JM. Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V. Gels 2023; 9:909. [PMID: 37998999 PMCID: PMC10671452 DOI: 10.3390/gels9110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir's model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L-1, 86 ± 6 mg L-1, and 127 ± 4 mg L-1, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.
Collapse
Affiliation(s)
- Luis M. Araque
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.M.A.); (G.J.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Buenos Aires 1113, Argentina
| | - Roberto Fernández de Luis
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (R.F.d.L.); (A.F.-M.)
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (R.F.d.L.); (A.F.-M.)
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Infantes-Molina
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29010 Malaga, Spain; (A.I.-M.); (E.R.-C.)
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29010 Malaga, Spain; (A.I.-M.); (E.R.-C.)
| | - Claudio J. Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Guillermo J. Copello
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.M.A.); (G.J.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Buenos Aires 1113, Argentina
| | - Juan M. Lázaro-Martínez
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.M.A.); (G.J.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Buenos Aires 1113, Argentina
| |
Collapse
|
6
|
Musarurwa H, Tavengwa NT. Recyclable polysaccharide/stimuli-responsive polymer composites and their applications in water remediation. Carbohydr Polym 2022; 298:120083. [DOI: 10.1016/j.carbpol.2022.120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
|
7
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
8
|
|
9
|
Musarurwa H, Tavengwa NT. Thermo-responsive polymers and advances in their applications in separation science. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|