1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024; 12:11611-11635. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Harini K, Girigoswami K, Thirumalai A, Girigoswami A. Polymer-Based Antimicrobial Peptide Mimetics for Treating Multi-drug Resistant Infections: Therapy and Toxicity Evaluation. Int J Pept Res Ther 2024; 30:64. [DOI: 10.1007/s10989-024-10648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 01/03/2025]
|
3
|
Gong Y, Peng Q, Qiao Y, Tian D, Zhang Y, Xiong X, He M, Xu X, Shi B. Hyperbranched Polylysine Exhibits a Collaborative Enhancement of the Antibiotic Capacity to Kill Gram-Negative Pathogens. Antibiotics (Basel) 2024; 13:217. [PMID: 38534651 DOI: 10.3390/antibiotics13030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
In recent years, traditional antibiotic efficacy outcomes have rapidly diminished due to the advent of drug resistance, and the dose limitation value has increased due to the severe side effect of globalized healthcare. Therefore, novel strategies are required to resensitize resistant pathogens to antibiotics existing in the field and prevent the emergence of drug resistance. In this study, cationic hyperbranched polylysine (HBPL-6) was synthesized using the one-pot polymerization method. HBPL-6 exhibited excellent non-cytotoxicity and bio-solubility properties. The present study also showed that HBPL-6 altered the outer membrane (OM) integrity of Escherichia coli O157:H7, Salmonella typhimurium, and Pseudomonas aeruginosa PAO1 by improving their permeability levels. When administered at a safe dosage, HBPL-6 enhanced the accumulation of rifampicin (RIF) and erythromycin (ERY) in bacteria to restore the efficacy of the antibiotics used. Moreover, the combination of HBPL-6 with colistin (COL) reduced the antibiotic dosage, which was helpful in preventing further drug-resistance outcomes. Therefore, this research provides a new strategy for reducing the dosage of drugs used to combat Gram-negative (G-) bacteria through their synergistic effects.
Collapse
Affiliation(s)
- Yuxin Gong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Qing Peng
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Dandan Tian
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Yuwei Zhang
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Xiaoyan Xiong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Mengxin He
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| |
Collapse
|
4
|
Fathi R, Mohammadi R. Preparation of pH-responsive magnetic nanocomposite hydrogels based on k-carrageenan/chitosan/silver nanoparticles: Antibacterial carrier for potential targeted anticancer drug delivery. Int J Biol Macromol 2023; 246:125546. [PMID: 37355059 DOI: 10.1016/j.ijbiomac.2023.125546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
This study reports the development of new pH-responsive drug delivery systems that are important for the treatment of cancer. The Mentha plant extract was obtained and then used for the biosynthesis of magnetic Ag bio nanoparticles (M-Ag bio-NPs). They were added in the formulation of hybrid hydrogel of k-carrageenan (k-Cr) and chitosan (CS) toward the synthesis of magnetic nanocomposite hydrogels. Their chemical structure and morphology were characterized by different analyses. Doxorubicin (DOX) was used as a model anticancer drug to study the targeted drug release behavior of the synthesized nanocomposite hydrogels (loading capacity: about 98 %). In vitro drug release studies showed that the release profile was noticeably controlled in a pH-dependent manner (higher drug release at pH 5). The antibacterial assessment confirmed the high antibacterial activity for the synthesized hydrogel against S. aureus (MIC values 39.06 μg/mL) and E. coli (MIC values > 19.53). In-vitro cytotoxicity results (MTT assay) demonstrated good biocompatibility (higher than 88 %) for the blank nanocomposite hydrogels, while DOX-loaded nanocomposite hydrogels showed high toxicity (about 22 % in the concentration of 20 μg/mL) against HeLa cells. The results showed that the present nanocomposite hydrogels can be suggested for potential application as an antibacterial and anticancer carrier.
Collapse
Affiliation(s)
- Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Aslani R, Namazi H. Fabrication of a new photoluminescent and pH-responsive nanocomposite based on a hyperbranched polymer prepared from amino acid for targeted drug delivery applications. Int J Pharm 2023; 636:122804. [PMID: 36889416 DOI: 10.1016/j.ijpharm.2023.122804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
In this study, the Fe3O4 nanoparticles were encapsulated in the hyperbranched poly L-lysine citramid (HBPLC). The Fe3O4-HBPLC nanocomposite modified with L-arginine and quantum dots (QDs) to obtain Fe3O4-HBPLC-Arg/QDs as a new photoluminescent and magnetic nanocarrier for the pH-responsive release and targeted delivery of Doxorubicin (DOX). The prepared magnetic nanocarrier was fully characterized using different techniques. Its various potential as a magnetic nanocarrier was evaluated. The in-vitro drug release studies exhibited that the prepared nanocomposite has pH-responsive behavior. The antioxidant study revealed good antioxidant properties of the nanocarrier. Also, the nanocomposite revealed excellent photoluminescence with a quantum yield of 48.5 %. Cellular uptake studies showed that Fe3O4-HBPLC-Arg/QD has high cell uptake in MCF-7 cells and can be used for bioimaging applications. In-vitro cytotoxicity, colloidal stability, and enzymatic degradability studies revealed that the prepared nanocarrier is non-toxic (with cell viability of 94%), stabile and biodegradable (about 37%). The nanocarrier was hemocompatible with 8% hemolysis. Also, according to the apoptosis and MTT assays, the Fe3O4-HBPLC-Arg/QD-DOX induced greater toxicity and cellular apoptosis against breast cancer cells about 47.0 %.
Collapse
Affiliation(s)
- Robab Aslani
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
6
|
Karimi S, Namazi H. Fabrication of biocompatible magnetic maltose/MIL-88 metal-organic frameworks decorated with folic acid-chitosan for targeted and pH-responsive controlled release of doxorubicin. Int J Pharm 2023; 634:122675. [PMID: 36736967 DOI: 10.1016/j.ijpharm.2023.122675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Recently, metal-organic frameworks (MOFs) have attracted tremendous attention as promising porous drug delivery systems for cancer treatment. In this work, for the first time, a novel magnetic maltose disaccharide molecule modified with MIL-88 metal-organic framework (Fe3O4@C@MIL-88) was prepared, and then this targeted system was used for the delivery of the doxorubicin (DOX) drug. Eventually, Fe3O4@C@MIL-88-DOX were successfully decorated with folic acid conjugated chitosan (Fe3O4@C@MIL-88-DOX-FC) as a new targeted and controlled release drug system for treatment of MCF-7 breast cancer. The encapsulation efficiency of the DOX in the Fe3O4@C@MIL-88 was obtained at ∼83.6%. The in vitro drug release profiles showed a pH-responsive controlled release of DOX in acidic pH confirming the performance of the systems in the cancerous environment. The DOX release mechanism from systems at pH 5 also showed that the kinetic data well fitted to the Korsmeyer-Peppas and Fickian diffusion. Furthermore, in vitro cytotoxicity and DAPI staining study clearly illustrated that the synthesized Fe3O4@C@MIL-88 system had low cytotoxicity and good biocompatibility against MCF-7 cancer cells and MCF-10A normal cells. Whereas, Fe3O4@C@MIL-88-DOX and Fe3O4@C@MIL-88-DOX-FC exhibited good antitumor activity as a result of targeted delivery of DOX, which indicated the MCF-7 cell death with apoptotic effects. Based on these findings, the resulting carriers could be used as promising targeted drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Soheyla Karimi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
7
|
Wang H, Fu H, Fu Y, Jiang L, Wang L, Tong H, Xie Z, Huang P, Sun M. Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003-2022). Front Bioeng Biotechnol 2023; 10:1099616. [PMID: 36686234 PMCID: PMC9852897 DOI: 10.3389/fbioe.2022.1099616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Nanocomposite Hydrogels (NHs) are 3D molecular networks formed by physically or covalently crosslinking polymer with nanoparticles or nanostructures, which are particularly suitable for serving as carriers for drug delivery systems. Many articles pertaining to the applications of Nanocomposite Hydrogels for drug delivery have been published, however, the use of bibliometric and visualized analysis in this area remains unstudied. The purpose of this bibliometric study intended to comprehensively analyze the knowledge domain, research hotspots and frontiers associated with the applications of Nanocomposite Hydrogels for drug delivery. Methods: We identified and retrieved the publications concerning the applications of NHs for drug delivery between 2003 and 2022 from Web of Science Core Collection Bibliometric and visualized analysis was utilized in this investigative study. Results: 631 articles meeting the inclusion criteria were identified and retrieved from WoSCC. Among those, 2,233 authors worldwide contributed in the studies, accompanied by an average annual article increase of 24.67%. The articles were co-authored by 764 institutions from 52 countries/regions, and China published the most, followed by Iran and the United States. Five institutions published more than 40 papers, namely Univ Tabriz (n = 79), Tabriz Univ Med Sci (n = 70), Islamic Azad Univ (n = 49), Payame Noor Univ (n = 42) and Texas A&M Univ (n = 41). The articles were published in 198 journals, among which the International Journal of Biological Macromolecules (n = 53) published the most articles, followed by Carbohydrate Polymers (n = 24) and ACS Applied Materials and Interfaces (n = 22). The top three journals most locally cited were Carbohydrate Polymers, Biomaterials and Advanced materials. The most productive author was Namazi H (29 articles), followed by Bardajee G (15 articles) and Zhang J (11 articles) and the researchers who worked closely with other ones usually published more papers. "Doxorubicin," "antibacterial" and "responsive hydrogels" represent the current research hotspots in this field and "cancer therapy" was a rising research topic in recent years. "(cancer) therapeutics" and "bioadhesive" represent the current research frontiers. Conclusion: This bibliometric and visualized analysis offered an investigative study and comprehensive understanding of publications regarding the applications of Nanocomposite Hydrogels for drug delivery from 2003 to 2022. The outcome of this study would provide insights for researchers in the field of Nanocomposite Hydrogels applications for drug delivery.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Hongxun Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Yefan Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zuoxu Xie
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Peng Huang
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| |
Collapse
|
8
|
Ohtake T, Ito H, Toyoda N. Amphiphilic Polymers for Color Dispersion: Toward Stable and Low-Viscosity Inkjet Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7618-7627. [PMID: 35679371 DOI: 10.1021/acs.langmuir.2c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amphiphilic random and block copolymers were synthesized as potential inkjet inks. This study evaluated the potential of these polymers for color dispersion by examining the following factors: surface tension, zeta potential, viscosity, and particle size. Acrylic acid and (ethoxyethoxy)ethyl acrylate were used as the hydrophilic molecular units. Styrene, butyl acrylate, and phenoxyethyl acrylate were used as hydrophobic units. Color dispersions were prepared by using organic dye and these amphiphilic polymers. The color dispersions containing random copolymers exhibited low viscosity, which is preferable for jetting, but the dye particles tended to sediment after the thermal aging test. In contrast, those containing block copolymers showed high viscosity, which was unsuitable for jetting. However, they retained their initial dispersion state after the aging test. The advantages and disadvantages of each monomer arrangement (random or block) were demonstrated, providing a future outlook on the molecular design of polymer dispersants for color dispersions.
Collapse
Affiliation(s)
- Toshihiro Ohtake
- Environment and Materials Development Department, Corporate Research and Development Division, Seiko Epson Corporation, 80 Harashinden, Hirooka, Shiojiri, Nagano 399-0785, Japan
| | - Hiroshi Ito
- Environment and Materials Development Department, Corporate Research and Development Division, Seiko Epson Corporation, 80 Harashinden, Hirooka, Shiojiri, Nagano 399-0785, Japan
| | - Naoyuki Toyoda
- Environment and Materials Development Department, Corporate Research and Development Division, Seiko Epson Corporation, 80 Harashinden, Hirooka, Shiojiri, Nagano 399-0785, Japan
| |
Collapse
|
9
|
Aslani R, Namazi H. Synthesis of a new polymer from arginine for the preparation of antioxidant, pH-sensitive, and photoluminescence nanocomposite as a cancer drugs carrier. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|