1
|
Meza López FDL, Hernández CJ, Vega-Chacón J, Tuesta JC, Picasso G, Khan S, Sotomayor MDPT, López R. Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples. Polymers (Basel) 2024; 16:1523. [PMID: 38891469 PMCID: PMC11174601 DOI: 10.3390/polym16111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N'-methylenebisacrylamide (MBA), and potassium persulfate (KPS). The polymers were then characterized. An absorption study was performed to determine the optimal conditions for the smartphone-based colorimetric device processing. The device consists of a black box (10 × 10 × 10 cm), which was designed to ensure repeatability of the image acquisition. The methodology involved the use of a smartphone camera to capture images of IIP previously exposed at Pb2+ solutions with various concentrations, and color channel values were calculated (RGB, YMK HSVI). PLS multivariate regression was performed, and the optimum working range (0-10 mg L-1) was determined using seven principal components with a detection limit (LOD) of 0.215 mg L-1 and R2 = 0.998. The applicability of a colorimetric sensor in real samples showed a coefficient of variation (% RSD) of less than 9%, and inductively coupled plasma mass spectrometry (ICP-MS) was applied as the reference method. These results confirmed that the quantitation smartphone-based colorimetric sensor is a suitable analytical tool for reliable on-site Pb2+ monitoring.
Collapse
Affiliation(s)
- Flor de Liss Meza López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Christian Jacinto Hernández
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru;
| | - Jaime Vega-Chacón
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Juan C. Tuesta
- Laboratorio de Biotecnología, Universidad Nacional Autónoma de Alto Amazonas, Calle Prolongación, Libertad 1220, Yurimaguas 16501, Peru;
| | - Gino Picasso
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Sabir Khan
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil;
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
| | - María D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| | - Rosario López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| |
Collapse
|
2
|
Zhang Z, Huang Z, Qin D, Liu D, Guo X, Lin H. Fluorescent starch-based hydrogel with cellulose nanofibrils and carbon dots for simultaneous adsorption and detection of Pb(II). Carbohydr Polym 2024; 323:121427. [PMID: 37940256 DOI: 10.1016/j.carbpol.2023.121427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The adsorption removal of lead (Pb) ions has become a crucial area of research due to the potential health hazards associated with Pb contamination. Developing cost-effective adsorbents for the removal of Pb(II) ions is significantly important. Hence, a novel fluorescent starch-based hydrogel (FSH) using starch (ST), cellulose nanofibrils (CN), and carbon dots (CD) was fabricated for simultaneous adsorption and detection of Pb(II). A comprehensive characterization of FSH, including its morphological features, chemical composition, and fluorescence characteristics, was conducted. Notably, FSH exhibited a maximum theoretical adsorption capacity of 265.9 mg/g, which was 13.0 times higher than that of pure ST. Moreover, FSH was employed as a fluorescent sensor for Pb(II) determination, achieving a limit of detection (LOD) of 0.06 μg/L. An analysis was further performed to investigate the adsorption and detection mechanisms of Pb(II) utilizing FSH. This study provides valuable insights into the production of a novel cost-effective ST-based adsorbent for the removal of Pb(II) ions.
Collapse
Affiliation(s)
- Zhixu Zhang
- State Key Laboratory of Subhealth Intervention Technology, 410128 Changsha, Hunan, China; College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Zhengwu Huang
- College of Food Science and Technology, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Dan Qin
- College of Food Science and Technology, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Dongbo Liu
- State Key Laboratory of Subhealth Intervention Technology, 410128 Changsha, Hunan, China; College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, 410004 Changsha, Hunan, China.
| | - Haiyan Lin
- National Research Center of Engineering Technology for Utilization Ingredients from Botanicals, 410128 Changsha, Hunan, China
| |
Collapse
|
3
|
Khan M, Al-Ghouti MA, Khraisheh M, Shomar B, Hijji Y, Tong Y, Mansour S, Nasser MS. Synthesis of nanostructured novel ion-imprinted polymer for selective removal of Cu 2+ and Sr 2+ ions from reverse osmosis concentrated brine. ENVIRONMENTAL RESEARCH 2023; 231:116024. [PMID: 37121345 DOI: 10.1016/j.envres.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
This study aims to prepare an ion-imprinted polymer (IIP) using copper sulfate as a template and potassium persulfate as an initiator to selectively adsorb copper ions (Cu2+) from aqueous solutions and in an attempt to also test its applicability for removing strontium ions (Sr2+). The prepared polymer was denoted by IIP-Cu. Various physical and chemical characterizations were performed for the prepared IIP-Cu. The scanning electron microscopy and transmission electron microscopy analyses confirmed the cavities formed after the removal of the template. It also indicated that the IIP-Cu had a rough and porous topology. The X-ray photoelectron spectroscopy confirmed the successful removal of the Cu template from IIP-Cu. The Brunauer-Emmet-Teller revealed that the surface area of IIP-Cu is as high as 152.3 m2/g while the pore radius is 8.51 nm. The effect of pH indicated that the maximum adsorption of Cu2+ was achieved at pH 8 with 98.7%. Isotherm studies revealed that the adsorption of Cu2+ was best explained using Langmuir models with a maximum adsorption capacity of 159 mg/g. The effect of temperature revealed that an increase in temperature had an adverse impact on Cu2+ removal from the aqueous solution, which was further confirmed by thermodynamic studies. The negative value of standard enthalpy change (-4.641 kJ/mol) revealed that the adsorption of Cu2+ onto IIP-Cu was exothermic. While the continuous increase in Gibbs free energy from -6776 kJ/mol to -8385 kJ/mol with the increase in temperature indicated that the adsorption process was spontaneous and feasible. Lastly, the positive value of the standard entropy change (0.023 J/mol.K) suggested that the Cu2+ adsorption onto IIP-Cu had a good affinity at the solid-liquid surface. The efficiency of the prepared IIP-Cu was also tested by studying the adsorption capacity using Sr2+ and real brine water. The results revealed that IIP-Cu was able to remove 63.57% of Sr2+ at pH 8. While the adsorption studies revealed that the experiment was best described using the Langmuir model with a maximum adsorption capacity of 76.92 mg/g. Additionally, IIP-Cu was applied in a real brine sample, which consisted of various metal ions. The highest percentage of Cu2+ removal was 90.6% and the lowest was 65.63% in 1:4 and 1:1 brine ratios, respectively. However, this study indicates the successful application of IIP-Cu in a real sample when it comes to the effective and efficient removal of Cu2+ in a solution consisting of various competing ions.
Collapse
Affiliation(s)
- Mariam Khan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, P.O. Box: 2713, Qatar
| | - Basem Shomar
- Environmental Science Center, Qatar University, Doha, P.O. Box: 2713, Qatar
| | - Yousef Hijji
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box: 2713, Qatar
| | - Yongfeng Tong
- Core Labs, Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU) 34110 Qatar Foundation, Doha, Qatar
| | - Said Mansour
- Core Labs, Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU) 34110 Qatar Foundation, Doha, Qatar
| | - Mustafa Saleh Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha, P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
5
|
Bao Y, Zhao Y, Qin G, Wang J, Li K, Zhu X. Histidine-mediated dendritic mesoporous magnetic ion-imprinted polymer toward effective and recoverable cadmium removal. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Fluorene-based polymers of intrinsic microporosity as fluorescent probes for metal ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|