1
|
Rizk MA, Yahya R, Alsaiari RA, Alsaiari MA, Shahat A, Elshaarawy RFM. Carboxymethyl-imidazolium O-vanillin Schiff base grafted into NH 2-tagged MIL-101 (Cr) for effective removal of cupric ions from aqueous effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38180-38195. [PMID: 38789710 DOI: 10.1007/s11356-024-33663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
A novel adsorbent (MIL-CMIVSB) was fabricated by modification of H2N-MIL-101(Cr) with carboxymethyl-imidazolium O-vanillin Schiff base. The MIL-CMIVSB's physicochemical characteristics were examined using the pertinent characterization methods. NH2-MIL-101(Cr) has a BET surface area of 1492.4 m2g-1, while MIL-CMIVSB adsorbent had 1278.7 m2g-1. Batch adsorption experiments examined the MIL-CMIVSB's cupric ion adsorption capacity from aqueous solutions at different adsorbent doses (0.1-3 mg), pH (2.0-10.0), contact times (0-240 min), metal ion initial concentrations (10-300 mg/L), and temperatures (298-308 K). The optimum conditions were 1 mg/mL of MIL-CMIVSB adsorbent, 46 min adsorption time, pH 7, 100 ppm initial cupric ion concentration, and 303 K temperature. MIL-CMIVSB effectively and selectively removes cupric ions with an adsorption capability of 359.05 ± 12.06 mg/g. The nonlinear Liu isotherm governed Cu(II) sorption performance on MIL-CMIVSB (KL = 0.257 ± 0.01 mg/g, R2 = 0.99892) and pseudo-2nd-order kinetically (k2 = 0.00116 × 10-4 g/mg min, R2 = 0.99721).
Collapse
Affiliation(s)
- Moustafa A Rizk
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Rana Yahya
- College of Science, Department of Chemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Raiedhah A Alsaiari
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Mabkhoot A Alsaiari
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Ahmed Shahat
- Department of Chemistry, Faculty of Science, Suez University, Suez, 43533, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez, 43533, Egypt.
- Institut Für Anorganische Chemie Und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Baruah R, Hazarika MP, Das AM, Sastry GN, Nath D, Talukdar K. Green synthesis of nanocellulose supported cu-bionanocomposites and their profound applicability in the synthesis of amide derivatives and controlling of food-borne pathogens. Carbohydr Polym 2024; 330:121786. [PMID: 38368093 DOI: 10.1016/j.carbpol.2024.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Copper bionanocomposites (CBNCS) were synthesized using Ipomoea carnea- sourced nanocellulose as support via an eco-friendly and cost-effective method. X-ray Diffractometer (XRD) pattern of CBNCS confirmed the octahedral structure of Cu2O, the face-centered cubic (FCC) crystal structure of Cu(0). XRD also revealed the crystal lattice of cellulose II. Surface Electron Microscope (SEM) and Transmission Electron Microscope (TEM) revealed the uniform distribution of copper nanoparticles (Cu NPs) with an average size of 10 nm due to the presence of nanocellulose. X-ray photoelectron spectroscopy (XPS) provided information about the electronic, chemical state and elemental composition of CBNCS. Thermogravimetric Analysis (TGA) showed the thermal stability of CBNCS. CBNCS catalyzed the rearrangement of oximes to primary amides in a very mild condition with a high yield of up to 92 %. CBNCS effectively inhibited the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with lower minimum inhibitory concentration MIC values. Antioxidant activity and electrical conductivity of CBNCS were also determined.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash Protim Hazarika
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Archana Moni Das
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - G Narahari Sastry
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dushmanta Nath
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Karishma Talukdar
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Li X, Zhou Z, Wang Y, Dong J, Jia X, Hu Z, Wei Q, Zhang W, Jiang Y, Zhang J, Dong Y. Schiff base modified starch: A promising biosupport for palladium in Suzuki cross-coupling reactions. Int J Biol Macromol 2023; 233:123596. [PMID: 36773881 DOI: 10.1016/j.ijbiomac.2023.123596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Starch can be used in diverse fields because it is a readily available, non-toxic polysaccharide with adaptable functionality and biodegradability. In this study, taking the aforementioned characteristics into consideration, we designed a modified starch (Starch-SB), which serves as supporting material for palladium stabilization. This new air and moisture-stable robust palladium composite [Starch-SB-Pd(II)] was characterized by FT-IR, XRD, TGA, XPS, SEM, EDX, TEM, CP/MAS 13C NMR, and ICP-MS analytical techniques. The catalytic studies exhibit high activity (up to 99 %) and stability in Suzuki cross-coupling reactions for this starch supported catalytic system under mild conditions (lower reaction temperature and green solvents) because of the cooperative interactions of multifunctional capturing sites on starch (Schiff base, hydroxy and amine groups) with palladium species. The experiments on reusability demonstrate that Starch-SB-Pd(II), which was prepared from functionalized starch, could be readily recycled several cycles through centrifugation. Moreover, we proposed a possibly multifunctional complex structure. This work presents an appealing and intriguing pathway for the utilization of polysaccharide as crucial support in green chemical transformations.
Collapse
Affiliation(s)
- Xinjuan Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Zhangquan Zhou
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yanan Wang
- Xinxiang NO.1 Middle School, Xinxiang 45300, PR China
| | - Jiaxin Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Xianbin Jia
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhiguo Hu
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Qingcong Wei
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Weiwei Zhang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yuqin Jiang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Jiaojiao Zhang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
4
|
Yahya R, Elshaarawy RFM. Cross-linked quaternized polyethersulfone-amino crystalline nanocellulose composite membrane for enhanced phosphate removal from wastewater. Int J Biol Macromol 2023; 236:123995. [PMID: 36924875 DOI: 10.1016/j.ijbiomac.2023.123995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Cross-linked quaternized polyethersulfone (QPES) hybrid mixed polymer membranes (MPMs) loading amino crystalline nanocellulose (ACNC) were successfully fabricated and applied for phosphate removal. The successful production of novel materials was validated by microscopic, spectral, and microanalytical methods. When compared to the native QPES membrane, the primary qualities of QPES hybrid membranes (hydrophilicity, porosity, permeability, antifouling) have been greatly improved overall. In addition, the surface zeta potential (SZP) and ion exchange capacity (IEC) measurements demonstrated the high positive surface charge densities of MPMs, which is beneficial for phosphate uptake. Phosphate adsorption by these membranes was studied at different temperatures, contact times, and initial phosphate concentrations using batch experiments, to investigate the optimal conditions for phosphate uptake. The MPMs showed excellent adsorption capacities with maximal removal capacities in the range of 68.8-87.95 %. Phosphate adsorption on MPMs was regulated primarily by the Sips isotherm model with multilayer adsorption capabilities and exhibited pseudo-second order kinetics (R2 = 0.9951-0.9976). The positive ΔH° and ΔS° values are indicative of the endothermic nature of phosphate adsorption and randomness increase. The negative ΔG° value indicates the spontaneousity of phosphate adsorption. Phosphate removal effectiveness of the membranes was maintained following recovery and regeneration with NaOH.
Collapse
Affiliation(s)
- Rana Yahya
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia.
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Yaduvanshi N, Jaiswal S, Tewari S, Shukla S, Mohammad Wabaidur S, Dwivedi J, Sharma S. Palladium Nanoparticles and their Composites: Green Synthesis and Applications with Special Emphasis to Organic Transformations. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Le Droumaguet B, Poupart R, Guerrouache M, Carbonnier B, Grande D. Metallic Nanoparticles Adsorbed at the Pore Surface of Polymers with Various Porous Morphologies: Toward Hybrid Materials Meant for Heterogeneous Supported Catalysis. Polymers (Basel) 2022; 14:polym14214706. [PMID: 36365698 PMCID: PMC9653613 DOI: 10.3390/polym14214706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Hybrid materials consisting of metallic nanoparticles (NPs) adsorbed on porous polymeric supports have been the subject of intense research for many years. Such materials indeed gain from intrinsic properties, e.g., high specific surface area, catalytic properties, porous features, etc., of both components. Rational design of such materials is fundamental regarding the functionalization of the support surface and thus the interactions required for the metallic NPs to be strongly immobilized at the pore surface. Herein are presented some significant scientific contributions to this rapidly expanding research field. This contribution will notably focus on various examples of such hybrid systems prepared from porous polymers, whatever the morphology and size of the pores. Such porous polymeric supports can display pores with sizes ranging from a few nanometers to hundreds of microns while pore morphologies, such as spherical, tubular, etc., and/or open or closed, can be obtained. These systems have allowed some catalytic molecular reactions to be successfully undertaken, such as the reduction of nitroaromatic compounds or dyes, e.g., methylene blue and Eosin Y, boronic acid-based C–C homocoupling reactions, but also cascade reactions consisting of two catalytic reactions achieved in a row.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Correspondence: (B.L.D.); (B.C.); (D.G.); Tel.: +33-(0)1-49-78-11-77 (B.L.D.); +33-(0)1-49-78-11-14 (B.C.); +33-(0)1-49-78-12-10 (D.G.)
| | | | | | - Benjamin Carbonnier
- Correspondence: (B.L.D.); (B.C.); (D.G.); Tel.: +33-(0)1-49-78-11-77 (B.L.D.); +33-(0)1-49-78-11-14 (B.C.); +33-(0)1-49-78-12-10 (D.G.)
| | - Daniel Grande
- Correspondence: (B.L.D.); (B.C.); (D.G.); Tel.: +33-(0)1-49-78-11-77 (B.L.D.); +33-(0)1-49-78-11-14 (B.C.); +33-(0)1-49-78-12-10 (D.G.)
| |
Collapse
|
7
|
Szafraniec M, Grabias-Blicharz E, Barnat-Hunek D, Landis EN. A Critical Review on Modification Methods of Cement Composites with Nanocellulose and Reaction Conditions during Nanocellulose Production. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7706. [PMID: 36363297 PMCID: PMC9654582 DOI: 10.3390/ma15217706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Nanocellulose (NC) is a natural polymer that has driven significant progress in recent years in the study of the mechanical properties of composites, including cement composites. Impressive mechanical properties, ability to compact the cement matrix, low density, biodegradability, and hydrophilicity of the surface of nanocellulose particles (which improves cement hydration) are some of the many benefits of using NCs in composite materials. The authors briefly presented a description of the types of NCs (including the latest, little-known shapes), showing the latest developments in their manufacture and modification. Moreover, NC challenges and opportunities are discussed to reveal its hidden potential, as well as the use of spherical and square/rectangular nanocellulose to modify cement composites. Intending to emphasize the beneficial use of NC in cementitious composites, this article discusses NC as an eco-friendly, low-cost, and efficient material, particularly for recycling readily available cellulosic waste. In view of the constantly growing interest in using renewable and waste materials in a wide range of applications, the authors hope to provide progress in using nanocellulose (NC) as a modifier for cement composites. Furthermore, this review highlights a gap in research regarding the preparation of new types of NCs, their application, and their impact on the properties of cementitious composites. Finally, the authors summarize and critically evaluate the type, dosage, and application method of NC, as well as the effects of these variables on the final properties of NC-derived cement composites. Nevertheless, this review article stresses up-to-date challenges for NC-based materials as well as future remarks in light of dwindling natural resources (including building materials), and the principles of a circular economy.
Collapse
Affiliation(s)
- Małgorzata Szafraniec
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Ewelina Grabias-Blicharz
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Danuta Barnat-Hunek
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Eric N. Landis
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
8
|
Refaee AA, Mostafa TB, El-Naggar ME, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Ismail LA. Cellulosic fabrics modified with polyphosphonium chitosan hydrazone-TiO 2-Ag nanobiocomposites for multifunctional applications. Int J Biol Macromol 2022; 220:482-492. [PMID: 35987357 DOI: 10.1016/j.ijbiomac.2022.08.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Bionanocomposites (BNC1,2) of binary (PPCH-Ag) and ternary (PPCH-TiO2-Ag) (PPCH = polyphosphonium chitosan-hydrazone) have been synthesized and immobilized on cellulosic fabrics (CFs) using an environmentally friendly single-step in situ methodology. The results of FTIR, TGA, EDX, SEM, and TEM investigations showed that PPCH and its BNCs were successfully formed on the surface layer of fabrics. Moreover, the BNC2-coated cloth exhibited a superhydrophobic behavior as revealed from the values of water contact angle (WCA) 152.1° and slide angle (SA) 8.7°. The cytotoxicity experiments on epithelial cells confirmed the safety of treated fabrics for human cells. The antimicrobial capabilities of the BNCs-treated textiles were greatly enhanced, with a small preference for BNC1-coated fabric, as compared to the native or other treated fabrics. In contrast, the BNC2-coated fabric demonstrated the highest anti-UV protection capabilities as indicated by its great capacity to reduce the UV transmission (UV-A, 2.1 %; UV-B, 1.8 %) as well as its UPF value (49.2). The durability tests revealed the high resistance of BNC2-CF against harsh washing conditions and their acquired functions sustainability up to 20 washing cycles.
Collapse
Affiliation(s)
- Ayaat A Refaee
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Tahia B Mostafa
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Mehrez E El-Naggar
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research Division, National Research Center, Cairo, Egypt
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Giza 12311, Egypt
| | - Reda F M Elshaarawy
- Chemistry Department, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Lamia A Ismail
- Chemistry Department, Faculty of Science, Port Said University, 42526 Port Said, Egypt
| |
Collapse
|
9
|
Yahya RO. Magnetic Graphene Oxide/Carboxymethyl-Imidazolium-Grafted Chitosan Schiff Base Nanocomposite: A New PdNPs Support for Efficient Catalytic Reduction of Hazardous Nitroarenes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|