1
|
Mansour AM, Khaled RM, Shehab OR. A comprehensive survey of Mn(I) carbonyls as CO-releasing molecules reported over the last two decades. Dalton Trans 2024. [PMID: 39543968 DOI: 10.1039/d4dt02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the last two decades, manganese(I) carbonyl complexes have been widely investigated as carbon monoxide releasing molecules (CORMs) to transfer small quantities of CO to biological targets to have beneficial impacts such as preventing ischemia reperfusion injury and reducing organ transplant rejection. Furthermore, these complexes exhibit beneficial anti-coagulative, anti-apoptotic, anti-inflammatory, and anti-proliferative properties. Owing to their highly controlled substitution chemistry and oxidative durability, Mn(I) carbonyl moieties were combined with a wide range of auxiliary ligands, including biomolecules. This review focused on tri- and tetracarbonyl Mn(I) complexes that were exposed to light, changed the redox status, or underwent thermal activation to release carbon monoxide. Kinetic parameters, stability in the dark, number of CO release equivalents, CO detection tools, and the nature of solvents used in the studies are reported and tabulated. An overview of all the previously published Mn(I) CORMs is specifically provided to define the method of action of these promising biologically active compounds and discuss their possible therapeutic applications in relation to their CO-releasing and biocompatibility characteristics.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
2
|
Bansal S, Liu D, Mao Q, Bauer N, Wang B. Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles. J Med Chem 2024; 67:9789-9815. [PMID: 38864348 PMCID: PMC11215727 DOI: 10.1021/acs.jmedchem.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Carbon monoxide (CO) is endogenously produced in mammals, with blood concentrations in the high micromolar range in the hemoglobin-bound form. Further, CO has shown therapeutic effects in various animal models. Despite its reputation as a poisonous gas at high concentrations, we show that CO should have a wide enough safety margin for therapeutic applications. The analysis considers a large number of factors including levels of endogenous CO, its safety margin in comparison to commonly encountered biomolecules or drugs, anticipated enhanced safety profiles when delivered via a noninhalation mode, and the large amount of safety data from human clinical trials. It should be emphasized that having a wide enough safety margin for therapeutic use does not mean that it is benign or safe to the general public, even at low doses. We defer the latter to public health experts. Importantly, this Perspective is written for drug discovery professionals and not the general public.
Collapse
Affiliation(s)
| | | | | | - Nicola Bauer
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
3
|
Mansour AM, Khaled RM, Ferraro G, Shehab OR, Merlino A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans 2024; 53:9612-9656. [PMID: 38808485 DOI: 10.1039/d4dt00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
4
|
Kondengadan SM, Bansal S, Yang X, Wang B. Folate-conjugated organic CO prodrugs: Synthesis and CO release kinetic studies. RESEARCH SQUARE 2024:rs.3.rs-4213303. [PMID: 38659849 PMCID: PMC11042441 DOI: 10.21203/rs.3.rs-4213303/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Carbon monoxide (CO) is an endogenous produced molecule and has shown efficacy in animal models of inflammation, organ injury, colitis and cancer metastasis. Because of its gaseous nature, there is a need for developing efficient CO delivery approaches, especially those capable of targeted delivery. In this study, we aim to take advantage of a previously reported approach of enrichment-triggered prodrug activation to achieve targeted delivery by targeting the folate receptor. The general idea is to exploit folate receptor-mediated enrichment as a way to accelerate a biomolecular Diels-Alder reaction for prodrug activation. In doing so, we first need to find ways to tune the reaction kinetics in order to ensure minimal rection without enrichment and optimal activation upon enrichment. In this feasibility study, we synthesized two diene-dienophile pairs and studied their reaction kinetics and ability to target the folate receptor. We found that folate conjugation significantly affects the reaction kinetics of the original diene-dienophile pairs. Such information will be very useful in future designs of similar targeted approaches of CO delivery.
Collapse
|
5
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
6
|
Liu D, Yang X, Wang B. Sensing a CO-Releasing Molecule (CORM) Does Not Equate to Sensing CO: The Case of DPHP and CORM-3. Anal Chem 2023; 95:9083-9089. [PMID: 37263968 PMCID: PMC10267888 DOI: 10.1021/acs.analchem.3c01495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule with demonstrated pharmacological effects. For studying CO biology, there is a need for sensitive and selective fluorescent probes for CO as research tools. In developing such probes, CO gas and/or commercially available metal-carbonyl-based "CO-releasing molecules" (CORMs) have been used as CO sources. However, new findings are steadily emerging that some of these commonly used CORMs do not release CO reliably in buffers commonly used for studying such CO probes and have very pronounced chemical reactivities of their own, which could lead to the erroneous identification of "CO probes" that merely detect the CORM used, not CO. This is especially true when the CO-sensing mechanism relies on chemistry that is not firmly established otherwise. Cu2+ can quench the fluorescence of an imine-based fluorophore, DPHP, presumably through complexation. The Cu2+-quenched fluorescence was restored through the addition of CORM-3, a Ru-based CORM. This approach was reported as a new "strategy for detecting carbon monoxide" with the proposed mechanism being dependent on CO reduction of Cu2+ to Cu1+ under near-physiological conditions ( Anal. Chem. 2022, 94, 11298-11306). The study only used CORM-3 as the source of CO. CORM-3 has been reported to have very pronounced redox reactivity and is known not to release CO in an aqueous solution unless in the presence of a strong nucleophile. To assess whether the fluorescent response of the DPHP-Cu(II) cocktail to CORM-3 was truly through detecting CO, we report experiments using both pure CO and CORM-3. We confirm the reported DPHP-Cu(II) response to CORM-3 but not pure CO gas. Further, we did not observe the stated selectivity of DPHP for CO over sulfide species. Along this line, we also found that a reducing agent such as ascorbate was able to induce the same fluorescent turn-on as CORM-3 did. As such, the DPHP-Cu(II) system is not a CO probe and cannot be used to study CO biology. Corollary to this finding, it is critical that future work in developing CO probes uses more than a chemically reactive "CO donor" as the CO source. Especially important will be to confirm the ability of the "CO probe" to detect CO using pure CO gas or another source of CO.
Collapse
Affiliation(s)
- Dongning Liu
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
7
|
Bauer N, Yang X, Yuan Z, Wang B. Reassessing CORM-A1: redox chemistry and idiosyncratic CO-releasing characteristics of the widely used carbon monoxide donor. Chem Sci 2023; 14:3215-3228. [PMID: 36970102 PMCID: PMC10033827 DOI: 10.1039/d3sc00411b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Redox activity and unreliable carbon monoxide production of CO donor, CORM-A1, presents new complications in its use for studying CO biology.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
8
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
9
|
Quest of new molecular frameworks for photoinduced carbon monoxide-releasing molecules: a computational prospective. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
11
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
12
|
Hemmersbach L, Schreiner Y, Zhang X, Dicke F, Hünemeyer L, Neudörfl J, Fleming T, Yard B, Schmalz H. Synthesis and Biological Evaluation of Water‐Soluble Esterase‐Activated CO‐Releasing Molecules Targeting Mitochondria. Chemistry 2022; 28:e202201670. [PMID: 35771078 PMCID: PMC9543658 DOI: 10.1002/chem.202201670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Lars Hemmersbach
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Yannick Schreiner
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Xinmiao Zhang
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Finn Dicke
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Leon Hünemeyer
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry University Hospital of Heidelberg 69120 Heidelberg Germany
- German Center for Diabetes Research (DZD) 85764 Neuherberg Germany
| | - Benito Yard
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | | |
Collapse
|
13
|
Mansour AM, Khaled RM, Khaled E, Ahmed SK, Ismael OS, Zeinhom A, Magdy H, Ibrahim SS, Abdelfatah M. Ruthenium(II) carbon monoxide releasing molecules: Structural perspective, antimicrobial and anti-inflammatory properties. Biochem Pharmacol 2022; 199:114991. [DOI: 10.1016/j.bcp.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
|
14
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ren X, Wang Y, Jia L, Guo X, He X, Zhao Z, Gao D, Yang Z. Intelligent Nanomedicine Approaches Using Medical Gas-Mediated Multi-Therapeutic Modalities Against Cancer. J Biomed Nanotechnol 2022; 18:24-49. [PMID: 35180898 DOI: 10.1166/jbn.2022.3224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emerging area of gas-mediated cancer treatment has received widespread attention in the medical community. Featuring unique physical, chemical, and biological properties, nanomaterials can facilitate the delivery and controllable release of medicinal gases at tumor sites, and also serve as ideal platforms for the integration of other therapeutic modalities with gas therapy to augment cancer therapeutic efficacy. This review presents an overview of anti-cancer mechanisms of several therapeutic gases: nitric oxide (NO), hydrogen sulfide (H₂S), carbon monoxide (CO), oxygen (O₂), and hydrogen (H₂). Controlled release behaviors of gases under different endogenous and exogenous stimuli are also briefly discussed, followed by their synergistic effects with different therapeutic modes. Moreover, the potential challenges and future prospects regarding gas therapy based on nanomaterials are also described, aiming to facilitate the advancement of gas therapeutic nanomedicine in new frontiers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhipeng Zhao
- School of Physical Education, Xizang Minzu University, Xianyang, 712000, Shaanxi, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Li Y, Hemmersbach L, Krause B, Sitnikov N, Schlundt Née Göderz A, Pastene Maldonado DO, Schmalz HG, Yard B. Head-to-Head Comparison of Selected Extra- and Intracellular CO-Releasing Molecules on Their CO-Releasing and Anti-Inflammatory Properties. Chembiochem 2021; 23:e202100452. [PMID: 34643986 PMCID: PMC9298253 DOI: 10.1002/cbic.202100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Over the past decade, a variety of carbon monoxide releasing molecules (CORMs) have been developed and tested. Some CORMs spontaneously release CO once in solution, while others require a trigger mechanism to release the bound CO from its molecular complex. The modulation of biological systems by CORMs depends largely on the spatiotemporal release of CO, which likely differs among the different types of CORMs. In spontaneously releasing CORMs, CO is released extracellularly and crosses the cell membrane to interact with intracellular targets. Other CORMs can directly release CO intracellularly, which may be a more efficient method to modulate biological systems. In the present study, we compared the efficacy of extracellular and intracellular CO-releasing CORMs that either release CO spontaneously or require an enzymatic trigger. The efficacy of such CORMs to modulate HO-1 and VCAM-1 expression in TNF-α-stimulated human umbilical vein endothelial cells (HUVEC) was evaluated.
Collapse
Affiliation(s)
- Yingchun Li
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | - Diego O Pastene Maldonado
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | - Benito Yard
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
18
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Zhang D, Krause BM, Schmalz HG, Wohlfart P, Yard BA, Schubert R. ET-CORM Mediated Vasorelaxation of Small Mesenteric Arteries: Involvement of Kv7 Potassium Channels. Front Pharmacol 2021; 12:702392. [PMID: 34552483 PMCID: PMC8451721 DOI: 10.3389/fphar.2021.702392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Although the vasoactive properties of carbon monoxide (CO) have been extensively studied, the mechanism by which CO mediates vasodilation is not completely understood. Through-out published studies on CO mediated vasodilation there is inconsistency on the type of K+-channels that are activated by CO releasing molecules (CORMs). Since the vasorelaxation properties of enzyme triggered CORMs (ET-CORMs) have not been studied thus far, we first assessed if ET-CORMs can mediate vasodilation of small mesenteric arteries and subsequently addressed the role of soluble guanylate cyclase (sGC) and that of K-channels herein. To this end, 3 different types of ET-CORMs that either contain acetate (rac-1 and rac-4) or pivalate (rac-8) as ester functionality, were tested ex vivo on methoxamine pre-contracted small rat mesenteric arteries in a myograph setting. Pre-contracted mesenteric arteries strongly dilated upon treatment with both types of acetate containing ET-CORMs (rac-1 and rac-4), while treatment with the pivalate containing ET-CORM (rac-8) resulted in no vasodilation. Pre-treatment of mesenteric arteries with the sGC inhibitor ODQ abolished rac-4 mediated vasodilation, similar as for the known sGC activator SNP. Likewise, rac-4 mediated vasodilation did not occur in KCL pretreated mesenteric arteries. Although mesenteric arteries abundantly expressed a variety of K+-channels only Kv7 channels were found to be of functional relevance for rac-4 mediated vasodilation. In conclusion the current results identified Kv7 channels as the main channel by which rac-4 mediates vasodilation. In keeping with the central role of Kv7 in the control of vascular tone and peripheral resistance these promising ex-vivo data warrant further in vivo studies, particularly in models of primary hypertension or cardiac diseases, to assess the potential use of ET-CORMs in these diseases.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, the Second Hospital of Anhui Medical University, Hefei, China
| | | | | | - Paulus Wohlfart
- Diabetes Research, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany.,Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
20
|
Zhu J, Wang J, Wang G, Zhang J, Tao W, Liu C, Liu M, Zhang H, Xie R, Ye F, Liu Y, Fang W, Chen X, Li Y. Precise Identification of the Dimethyl Sulfoxide Triggered Tricarbonyldichlororuthenium(II) Dimer for Releasing CO. J Phys Chem Lett 2021; 12:4658-4665. [PMID: 33978423 DOI: 10.1021/acs.jpclett.1c00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low concentrations of carbon monoxide (CO) can play vital roles in pharmacological and physiological functions in the human body. The transition-metal carbonyl complexes of the tricarbonyldichlororuthenium(II) dimer [Ru2(CO)6Cl4 (CORM-2)] were proposed as CO-releasing molecules (CORMs) to improve the delivery efficiency of CO for therapeutic effects. The accurate identification of final products for CORMs in solution and the detailed mechanisms of the release of CO were the essential prerequisite for its effective physiological application, which have been deficient. In this study, utilizing the cutting-edge two-dimensional (2D) IR spectroscopy, with the intrinsic vibrational modes and the coupling information on dynamics of intramolecular vibrational energy redistribution (IVR), the final products of A, B, C, and E are accurately identified when CORM-2 is dissolved in dimethyl sulfoxide (DMSO). Furthermore, with the clues on intermolecular interaction and chemical exchange dynamics between different products, the transformations between different products are also directly characterized for the first time. These findings challenge the results from the classic 1D spectroscopic pattern, and they evidently demonstrated that the release of CO from CORM-2 in DMSO was slow and complicated with multiple reaction pathways. Combining with DFT simulations, the detailed mechanisms of release of CO for CORM-2 dissolved in DMSO are schematically proposed, which can significantly contribute to its drug optimization and pharmacological as well as physiological applications.
Collapse
Affiliation(s)
- Jiangrui Zhu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guosheng Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Liu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weihai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
| |
Collapse
|
21
|
Yuan Z, Yang X, Ye Y, Tripathi R, Wang B. Chemical Reactivities of Two Widely Used Ruthenium-Based CO-Releasing Molecules with a Range of Biologically Important Reagents and Molecules. Anal Chem 2021; 93:5317-5326. [PMID: 33745269 DOI: 10.1021/acs.analchem.1c00533] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruthenium-based CO-releasing molecules (CO-RMs), CORM-2 and CORM-3, have been widely used as surrogates of CO for studying its biological effects in vitro and in vivo with much success. However, several previous solution-phase and in vitro studies have revealed the ability of such CO-RMs to chemically modify proteins and reduce aromatic nitro groups due to their intrinsic chemical reactivity under certain conditions. In our own work of studying the cytoprotective effects of CO donors, we were in need of assessing chemical factors that could impact the interpretation of results from CO donors including CORM-2,3 in various in vitro assays. For this, we examined the effects of CORM-2,3 toward representative reagents commonly used in various bioassays including resazurin, tetrazolium salts, nitrites, and azide-based H2S probes. We have also examined the effect of CORM-2,3 on glutathione disulfide (GSSG), which is a very important redox regulator. Our studies show the ability of these CO-RMs to induce a number of chemical and/or spectroscopic changes for several commonly used biological reagents under near-physiological conditions. These reactions/spectroscopic changes cannot be duplicated with CO-deleted CO-RMs (iCORMs), which are often used as negative controls. Furthermore, both CORM-2 and -3 are capable of consuming and reducing GSSG in solution. We hope that the results described will help in the future design of control experiments using Ru-based CO-RMs.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuqian Ye
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
22
|
Phototriggered cytotoxic properties of tricarbonyl manganese(I) complexes bearing α-diimine ligands towards HepG2. J Biol Inorg Chem 2021; 26:135-147. [PMID: 33638701 DOI: 10.1007/s00775-020-01843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Reaction between bromo tricarbonyl manganese(I) and N,N'-bis(phenyl)-1,4-diaza-1,3-butadiene ligands, bearing different electron-donating and electron-withdrawing groups R = OCH3, Cl, and NO2 in the ortho- and para-positions on the phenyl substituent, afforded [MnBr(CO)3(N-N)] complexes. The influence of the character and position of the substituent on the dark stability and carbon monoxide releasing kinetics was systematically investigated and correlated with the data of the time-dependent density functional theory calculations. The combined UV/Vis and IR data clearly revealed that the aerated solutions of [MnBr(CO)3(N-N)] in either coordinating or noncoordinating solvents are dark stable and the fluctuations observed during the incubation period especially in the case of the nitro derivatives may be attributed to the exchange of the axial bromo ligand with the coordinating solvent molecules. The free ligands and nitro complexes were non-cytotoxic to HepG2 cells under both the dark and illumination conditions. In the dark, Mn(I) compounds, incorporating o-OCH3 and o-Cl, exhibited excellent cytotoxicity with IC50 values of 18.1 and 11.8 μM, while their para-substituted analogues were inactive in the dark and active upon the irradiation at 365 nm with IC50 values of 5.7 and 6.7 μM, respectively.
Collapse
|
23
|
Bakalarz D, Surmiak M, Yang X, Wójcik D, Korbut E, Śliwowski Z, Ginter G, Buszewicz G, Brzozowski T, Cieszkowski J, Głowacka U, Magierowska K, Pan Z, Wang B, Magierowski M. Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharm Sin B 2021; 11:456-475. [PMID: 33643824 PMCID: PMC7893125 DOI: 10.1016/j.apsb.2020.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Metal-based carbon monoxide (CO)-releasing molecules have been shown to exert anti-inflammatory and anti-oxidative properties maintaining gastric mucosal integrity. We are interested in further development of metal-free CO-based therapeutics for oral administration. Thus, we examine the protective effect of representative CO prodrug, BW-CO-111, in rat models of gastric damage induced by necrotic ethanol or aspirin, a representative non-steroidal anti-inflammatory drug. Treatment effectiveness was assessed by measuring the microscopic/macroscopic gastric damage area and gastric blood flow by laser flowmetry. Gastric mucosal mRNA and/or protein expressions of HMOX1, HMOX2, nuclear factor erythroid 2-related factor 2, COX1, COX2, iNos, Anxa1 and serum contents of TGFB1, TGFB2, IL1B, IL2, IL4, IL5, IL6, IL10, IL12, tumor necrosis factor α, interferon γ, and GM-CSF were determined. CO content in gastric mucosa was assessed by gas chromatography. Pretreatment with BW-CO-111 (0.1 mg/kg, i.g.) increased gastric mucosal content of CO and reduced gastric lesions area in both models followed by increased GBF. These protective effects of the CO prodrug were supported by changes in expressions of molecular biomarkers. However, because the pathomechanisms of gastric damage differ between topical administration of ethanol and aspirin, the possible protective and anti-inflammatory mechanisms of BW-CO-111 may be somewhat different in these models.
Collapse
Affiliation(s)
- Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Forensic Toxicology, Institute of Forensic Research, Cracow 31-033, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Internal Medicine, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Corresponding authors.
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Corresponding authors.
| |
Collapse
|
24
|
Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
26
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials 2020; 255:120193. [DOI: 10.1016/j.biomaterials.2020.120193] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
|
28
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2020. [PMID: 31820474 DOI: 10.1012/med.21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
29
|
Goebel U, Wollborn J. Carbon monoxide in intensive care medicine-time to start the therapeutic application?! Intensive Care Med Exp 2020; 8:2. [PMID: 31919605 PMCID: PMC6952485 DOI: 10.1186/s40635-020-0292-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/05/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon monoxide (CO) is not only known as a toxic gas due to its characteristics as an odorless molecule and its rapid binding to haem-containing molecules, thus inhibiting the respiratory chain in cells resulting in hypoxia. For decades, scientists established evidence about its endogenously production in the breakdown of haem via haem-oxygenase (HO-1) and its physiological effects. Among these, the modulation of various systems inside the body are well described (e.g., anti-inflammatory, anti-oxidative, anti-apoptotic, and anti-proliferative). Carbon monoxide is able to modulate several extra- and intra-cellular signaling molecules leading to differentiated response according to the specific stimulus. With our growing understanding in the way CO exerts its effects, especially in the mitochondria and its intracellular pathways, it is tempting to speculate about a clinical application of this substance. Since HO-1 is not easy to induce, research focused on the application of the gaseous molecule CO by itself or the implementation of carbon monoxide releasing molecules (CO-RM) to deliver the molecule at a time- and dose dependently safe way to any target organ. After years of research in cellular systems and animal models, summing up data about safety issues as well as possible target to treat in various diseases, the first feasibility trials in humans were established. Up-to-date, safety issues have been cleared for low-dose carbon monoxide inhalation (up to 500 ppm), while there is no clinical data regarding the injection or intake of any kind of CO-RM so far. Current models of human research include sepsis, acute lung injury, and acute respiratory distress syndrome as well as acute kidney injury. Carbon monoxide is a most promising candidate in terms of a therapeutic agent to improve outbalanced organ conditions. In this paper, we summarized the current understanding of carbon monoxide’s biology and its possible organ targets to treating the critically ill patients in tomorrow’s ICU.
Collapse
Affiliation(s)
- Ulrich Goebel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital, Hohenzollernring 70, 48145, Münster, Germany.
| | - Jakob Wollborn
- Department of Anaesthesiology and Critical Care, Medical Centre - University of Freiburg, Faculty of Medicine, Freiburg im Breisgau, Germany
| |
Collapse
|
30
|
Suchland B, Malassa A, Görls H, Krieck S, Westerhausen M. Iron(I)‐Based Carbonyl Complexes with Bridging Thiolate Ligands as Light‐Triggered CO Releasing Molecules (photoCORMs). Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Benedikt Suchland
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Astrid Malassa
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Helmar Görls
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Sven Krieck
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Matthias Westerhausen
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
31
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
32
|
Yan H, Du J, Zhu S, Nie G, Zhang H, Gu Z, Zhao Y. Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904382. [PMID: 31663244 DOI: 10.1002/smll.201904382] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) therapy has emerged as a hot topic under exploration in the field of gas therapy as it shows the promise of treating various diseases. Due to the gaseous property and the high affinity for human hemoglobin, the main challenges of administrating medicinal CO are the lack of target selectivity as well as the toxic profile at relatively high concentrations. Although abundant CO releasing molecules (CORMs) with the capacity to deliver CO in biological systems have been developed, several disadvantages related to CORMs, including random diffusion, poor solubility, potential toxicity, and lack of on-demand CO release in deep tissue, still confine their practical use. Recently, the advent of versatile nanomedicine has provided a promising chance for improving the properties of naked CORMs and simultaneously realizing the therapeutic applications of CO. This review presents a brief summarization of the emerging delivery strategies of CO based on nanomaterials for therapeutic application. First, an introduction covering the therapeutic roles of CO and several frequently used CORMs is provided. Then, recent advancements in the synthesis and application of versatile CO releasing nanomaterials are elaborated. Finally, the current challenges and future directions of these important delivery strategies are proposed.
Collapse
Affiliation(s)
- Haili Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jiangfeng Du
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjun Nie
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
33
|
Mansour AM, Steiger C, Nagel C, Schatzschneider U. Wavelength‐Dependent Control of the CO Release Kinetics of Manganese(I) Tricarbonyl PhotoCORMs with Benzimidazole Coligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry Faculty of Science Cairo University Gamma Street 12613 Cairo Giza Egypt
- Institut für Anorganische Chemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Steiger
- Institut für Pharmazie und Lebensmittelchemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
34
|
Design and Synthesis of New Protease‐Triggered CO‐Releasing Peptide–Metal‐Complex Conjugates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Ollivier A, Foresti R, El Ali Z, Martens T, Kitagishi H, Motterlini R, Rivard M. Design and Biological Evaluation of Manganese- and Ruthenium-Based Hybrid CO-RMs (HYCOs). ChemMedChem 2019; 14:1684-1691. [PMID: 31319021 DOI: 10.1002/cmdc.201900426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 01/07/2023]
Abstract
Interest in the therapeutic effects of carbon monoxide (CO), a product of heme degradation catalyzed by the enzyme heme oxygenase-1 (HO-1), has led to the development of CO-releasing molecules (CO-RMs) for the controlled delivery of this gas in vivo. We recently proposed conjugating a cobalt-based CO-RM with various activators of nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that regulates HO-1 expression, in order to exploit the beneficial effects of exogenous and endogenous CO. In this study, we describe the preparation of hybrid molecules (termed HYCOs) conjugating a fumaric acid derivative as an Nrf2 activator to a Mn- or a Ru-based CO-RM known to be pharmacologically active. With the exception of an acyl-manganese complex, these hybrids were obtained by associating the two bioactive entities by means of a linker of variable structure. X-ray diffraction analyses and preliminary biological investigations are also presented.
Collapse
Affiliation(s)
- Anthony Ollivier
- Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 94320, Thiais, France
| | - Roberta Foresti
- INSERM U955, Equipe 12, 94000, Créteil, France.,Université Paris Est, Faculté de Médecine, 94000, Créteil, France
| | - Zeina El Ali
- INSERM U955, Equipe 12, 94000, Créteil, France.,Université Paris Est, Faculté de Médecine, 94000, Créteil, France
| | - Thierry Martens
- Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 94320, Thiais, France
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Roberto Motterlini
- INSERM U955, Equipe 12, 94000, Créteil, France.,Université Paris Est, Faculté de Médecine, 94000, Créteil, France
| | - Michael Rivard
- Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 94320, Thiais, France
| |
Collapse
|
36
|
Sakla R, Singh A, Kaushik R, Kumar P, Jose DA. Allosteric Regulation in Carbon Monoxide (CO) Release: Anion Responsive CO-Releasing Molecule (CORM) Derived from (Terpyridine)phenol Manganese Tricarbonyl Complex with Colorimetric and Fluorescence Monitoring. Inorg Chem 2019; 58:10761-10768. [DOI: 10.1021/acs.inorgchem.9b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rahul Sakla
- Department of Chemistry, NIT-Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Ajeet Singh
- Department of Chemistry, Prof. Rajendra Singh (Raju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purrrvanchal University Jaunpur, U.P., India
| | - Rahul Kaushik
- Department of Chemistry, NIT-Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Pawan Kumar
- Department of Chemistry, NIT-Kurukshetra, Kurukshetra-136119, Haryana, India
| | - D. Amilan Jose
- Department of Chemistry, NIT-Kurukshetra, Kurukshetra-136119, Haryana, India
| |
Collapse
|
37
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
38
|
Mansour AM, Ragab MS. Spectroscopic and DFT studies of photoactivatable Mn(I) tricarbonyl complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of ScienceCairo University Gamma Street Giza 12613 Egypt
| | - Mona S. Ragab
- Department of Chemistry, Faculty of ScienceCairo University Gamma Street Giza 12613 Egypt
| |
Collapse
|
39
|
Mansour AM. Green-Light-Induced PhotoCORM: Lysozyme Binding Affinity towards MnI
and ReI
Carbonyl Complexes and Biological Activity Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street 12613 Giza, Cairo Egypt
| |
Collapse
|
40
|
Mansour AM, Shehab OR. {Ru(CO)x}-core terpyridine complexes: Lysozyme binding affinity, DNA and photoinduced carbon monoxide releasing properties. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Reactivity of visible-light induced CO releasing thiourea-based Mn(I) tricarbonyl bromide (CORM-NS1) towards lysozyme. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Sakla R, Jose DA. Vesicles Functionalized with a CO-Releasing Molecule for Light-Induced CO Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14214-14220. [PMID: 29600840 DOI: 10.1021/acsami.8b03310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a new type of methodology to deliver carbon monoxide (CO) for biological applications has been introduced. An amphiphilic manganese carbonyl complex (1.Mn) incorporated into the 1,2-distearoyl-sn-glycero-3-phosphocholine lipid vesicles has been reported first time for the photoinduced release of CO. The liposomes (Ves-1.Mn) gradually released CO under light at 365 nm over a period of 50 min with a half-time of 26.5 min. The CO-releasing ability of vesicles appended with 1.Mn complexes has been confirmed by myoglobin assay and infrared study. The vesicles appended with 1.Mn have the advantages of biocompatibility, water solubility, and steady and slow CO release. This approach could be a rational approach for applying various water-insoluble photoinduced CO donors in aqueous media by using vesicles as a nanocarrier for CO release.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - D Amilan Jose
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| |
Collapse
|
43
|
Mansour AM. RuII
-Carbonyl photoCORMs with N,N
-Benzimidazole Bidentate Ligands: Spectroscopic, Lysozyme Binding Affinity, and Biological Activity Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Cairo University; Faculty of Science; Gamma Street 12613 Giza, Cairo Egypt
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
44
|
Flanagan L, Steen RR, Saxby K, Klatter M, Aucott BJ, Winstanley C, Fairlamb IJS, Lynam JM, Parkin A, Friman VP. The Antimicrobial Activity of a Carbon Monoxide Releasing Molecule (EBOR-CORM-1) Is Shaped by Intraspecific Variation within Pseudomonas aeruginosa Populations. Front Microbiol 2018; 9:195. [PMID: 29472912 PMCID: PMC5809400 DOI: 10.3389/fmicb.2018.00195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide releasing molecules (CORMs) have been suggested as a new synthetic class of antimicrobials to treat bacterial infections. Here we utilized a novel EBOR-CORM-1 ([NEt4][MnBr2(CO)4]) capable of water-triggered CO-release, and tested its efficacy against a collection of clinical Pseudomonas aeruginosa strains that differ in infection-related virulence traits. We found that while EBOR-CORM-1 was effective in clearing planktonic and biofilm cells of P. aeruginosa strain PAO1 in a concentration dependent manner, this effect was less clear and varied considerably between different P. aeruginosa cystic fibrosis (CF) lung isolates. While a reduction in cell growth was observed after 8 h of CORM application, either no effect or even a slight increase in cell densities and the amount of biofilm was observed after 24 h. This variation could be partly explained by differences in bacterial virulence traits: while CF isolates showed attenuated in vivo virulence and growth compared to strain PAO1, they formed much more biofilm, which could have potentially protected them from the CORM. Even though no clear therapeutic benefits against a subset of isolates was observed in an in vivo wax moth acute infection model, EBOR-CORM-1 was more efficient at reducing the growth of CF isolate co-culture populations harboring intraspecific variation, in comparison with efficacy against more uniform single isolate culture populations. Together these results suggest that CORMs could be effective at controlling genetically diverse P. aeruginosa populations typical for natural chronic CF infections and that the potential benefits of some antibiotics might not be observed if tested only against clonal bacterial populations.
Collapse
Affiliation(s)
- Lindsey Flanagan
- Department of Biology, University of York, York, United Kingdom
- Department of Chemistry, University of York, York, United Kingdom
| | - Rachel R. Steen
- Department of Chemistry, University of York, York, United Kingdom
| | - Karinna Saxby
- Department of Biology, University of York, York, United Kingdom
- Department of Chemistry, University of York, York, United Kingdom
| | - Mirre Klatter
- Department of Biology, University of York, York, United Kingdom
| | | | - Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | - Jason M. Lynam
- Department of Chemistry, University of York, York, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, York, United Kingdom
| | | |
Collapse
|
45
|
Ayudhya TI, Pellechia PJ, Dingra NN. ROS-mediated carbon monoxide and drug release from drug-conjugated carboxyboranes. Dalton Trans 2018; 47:538-543. [DOI: 10.1039/c7dt03581k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual nature of amine carboxyboranes for combined CO and drug delivery is facilitated by ROS.
Collapse
Affiliation(s)
- T. I. Ayudhya
- Department of Chemistry
- University of Alaska
- Anchorage
- USA
| | - P. J. Pellechia
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - N. N. Dingra
- Department of Chemistry
- University of Alaska
- Anchorage
- USA
| |
Collapse
|
46
|
Ryter SW, Ma KC, Choi AMK. Carbon monoxide in lung cell physiology and disease. Am J Physiol Cell Physiol 2017; 314:C211-C227. [PMID: 29118026 DOI: 10.1152/ajpcell.00022.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carbon monoxide (CO) is an endogenously produced gas that has gained recognition as a biological signal transduction effector with properties similar, but not identical, to that of nitric oxide (NO). CO, which binds primarily to heme iron, may activate the hemoprotein guanylate cyclase, although with lower potency than NO. Furthermore, CO can modulate the activities of several cellular signaling molecules such as p38 MAPK, ERK1/2, JNK, Akt, NF-κB, and others. Emerging studies suggest that mitochondria, the energy-generating organelle of cells, represent a key target of CO action in eukaryotes. Dose-dependent modulation of mitochondrial function by CO can result in alteration of mitochondrial membrane potential, mitochondrial reactive oxygen species production, release of proapoptotic and proinflammatory mediators, as well as the inhibition of respiration at high concentration. CO, through modulation of signaling pathways, can impact key biological processes including autophagy, mitochondrial biogenesis, programmed cell death (apoptosis), cellular proliferation, inflammation, and innate immune responses. Inhaled CO is widely known as an inhalation hazard due to its rapid complexation with hemoglobin, resulting in impaired oxygen delivery to tissues and hypoxemia. Despite systemic and cellular toxicity at high concentrations, CO has demonstrated cyto- and tissue-protective effects at low concentration in animal models of organ injury and disease. These include models of acute lung injury (e.g., hyperoxia, hypoxia, ischemia-reperfusion, mechanical ventilation, bleomycin) and sepsis. The success of CO as a candidate therapeutic in preclinical models suggests potential clinical application in inflammatory and proliferative disorders, which is currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York
| | - Kevin C Ma
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York.,New York Presbyterian Hospital , New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York.,New York Presbyterian Hospital , New York, New York
| |
Collapse
|
47
|
Mansour AM, Shehab OR. Photoactivatable CO-Releasing Properties of {Ru(CO)2}-Core Pyridylbenzimidazole Complexes and Reactivity towards Lysozyme. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Cairo University; Faculty of Science; Gamma Street 12613 Giza, Cairo Egypt
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Ola R. Shehab
- Chemistry Department; Cairo University; Faculty of Science; Gamma Street 12613 Giza, Cairo Egypt
| |
Collapse
|
48
|
Mansour AM, Friedrich A. Blue-light induced CO releasing properties of thiourea based manganese(I) carbonyl complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Sadhukhan T, Das D, Kalekar P, Avasare V, Pal S. Fenton’s Reagent Catalyzed Release of Carbon Monooxide from 1,3-Dihydroxy Acetone. J Phys Chem A 2017; 121:4569-4577. [DOI: 10.1021/acs.jpca.7b03676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tumpa Sadhukhan
- Department
of Chemistry, Indian Institution of Technology Bombay, Mumbai 400076, India
| | - Dharitri Das
- Department
of Chemistry, Indian Institution of Technology Bombay, Mumbai 400076, India
| | - Pratik Kalekar
- Department
of Chemistry, Sir Parashurambhau College, Pune 411030, India
| | - Vidya Avasare
- Department
of Chemistry, Sir Parashurambhau College, Pune 411030, India
| | - Sourav Pal
- Department
of Chemistry, Indian Institution of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
50
|
Mansour AM. Visible light photoactivatable CO releasing manganese (I) tricarbonyl complexes: Experimental and DFT studies. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|