1
|
Kiratipaiboon C, Voronkova M, Ghosh R, Rojanasakul LW, Dinu CZ, Chen YC, Rojanasakul Y. SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomater Sci Eng 2020; 6:5290-5304. [PMID: 33455278 DOI: 10.1021/acsbiomaterials.0c00887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts. This was indicated by increased expression of stem cell markers (e.g., CD44 and ABCG2) and fibrogenic markers (e.g., collagen and α-SMA) in CNT-exposed cells. These cells also showed increased sphere formation, anoikis resistance, and aldehyde dehydrogenase (ALDH) activities, which are characteristics of stem cells. Mechanistic studies revealed sex-determining region Y-box 2 (SOX2), a self-renewal associated transcription factor, as a key driver of FSC acquisition and fibrogenesis. Upregulation and colocalization of SOX2 and COL1 were found in the fibrotic lung tissues of CNT-exposed mice via oropharyngeal aspiration after 56 days. The knockdown of SOX2 by gene silencing abrogated the fibrogenic and FSC-inducing effects of CNTs. Chromatin immunoprecipitation assays identified SOX2-binding sites on COL1A1 and COL1A2, indicating SOX2 as a transcription factor in collagen synthesis. SOX2 was also found to play a critical role in TGF-β-induced fibrogenesis through its collagen- and FSC-inducing effects. Since many nanomaterials are known to induce TGF-β, our findings that SOX2 regulate FSCs and fibrogenesis may have broad implications on the fibrogenic mechanisms and treatment strategies of various nanomaterial-induced fibrotic disorders.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Maria Voronkova
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yi Charlie Chen
- College of Health Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia 26416, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
2
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Ray JL, Fletcher P, Burmeister R, Holian A. The role of sex in particle-induced inflammation and injury. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1589. [PMID: 31566915 DOI: 10.1002/wnan.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials within various applications such as medicine, electronics, and cosmetics has been steadily increasing; therefore, the rate of occupational and environmental exposures has also increased. Inhalation is an important route of exposure to nanomaterials and has been shown to cause various respiratory diseases in animal models. Human lung disease frequently presents with a sex/gender-bias in prevalence or severity, but investigation of potential sex-differences in the adverse health outcomes associated with nanoparticle inhalation is greatly lacking. Only ~20% of basic research in the general sciences use both male and female animals and a substantial percentage of these do not address differences between sexes within their analyses. This has prevented researchers from fully understanding the impact of sex-based variables on health and disease, particularly the pathologies resulting from the inhalation of particles. The mechanisms responsible for sex-differences in respiratory disease remain unclear, but could be related to a number of variables including sex-differences in hormone signaling, lung physiology, or respiratory immune function. By incorporating sex-based analysis into respiratory nanotoxicology and utilizing human data from other relevant particles (e.g., asbestos, silica, particulate matter), we can improve our understanding of sex as a biological variable in nanoparticle exposures. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Jessica L Ray
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Rachel Burmeister
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
4
|
Airway Exposure to Modified Multi-walled Carbon Nanotubes Perturbs Cardiovascular Adenosinergic Signaling in Mice. Cardiovasc Toxicol 2019; 19:168-177. [PMID: 30382549 DOI: 10.1007/s12012-018-9487-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The broad list of commercial applications for multi-walled carbon nanotubes (MWCNT) can be further expanded with the addition of various surface chemistry modifications. For example, standard commercial grade MWCNT (C-grade) can be carboxylated (COOH) or nitrogen-doped (N-doped) to suite specific utilities. We previously reported dose-dependent expansions of cardiac ischemia/reperfusion (I/R) injury, 24 h after intratracheal instillation of C-grade, COOH, or N-doped MWCNT in mice. Here, we have tested the hypothesis that airway exposure to MWCNT perturbs cardiovascular adenosinergic signaling, which could contribute to exacerbation of cardiac I/R injury. 100 µL of Vehicle or identical suspension volumes containing 100 µg of C-grade, COOH, or N-doped MWCNT were instilled into the trachea of CD-1 ICR mice. 1 day later, we measured cyclic adenosine monophosphate (cAMP) concentrations in cardiac tissue and evaluated arterial adenosinergic smooth muscle signaling mechanisms related to nitric oxide synthase (NOS) and cyclooxygenase (COX) in isolated aortic tissue. We also verified cardiac I/R injury expansion and examined both lung histology and bronchoalveolar lavage fluid cellularity in MWCNT exposed mice. Myocardial cAMP concentrations were reduced (p < 0.05) in the C-grade group by 17.4% and N-doped group by 13.7% compared to the Vehicle group. Curve fits to aortic ring 2-Cl-Adenosine concentration responses were significantly greater in the MWCNT groups vs. the Vehicle group. Aortic constrictor responses were more pronounced with NOS inhibition and were abolished with COX inhibition. These findings indicate that addition of functional chemical moieties on the surface of MWCNT may alter the biological responses to exposure by influencing cardiovascular adenosinergic signaling and promoting cardiac injury.
Collapse
|
5
|
Ray JL, Holian A. Sex differences in the inflammatory immune response to multi-walled carbon nanotubes and crystalline silica. Inhal Toxicol 2019; 31:285-297. [PMID: 31556754 PMCID: PMC6813775 DOI: 10.1080/08958378.2019.1669743] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/15/2019] [Indexed: 12/28/2022]
Abstract
Background: Respiratory disease is a leading cause of death and disability worldwide. These diseases frequently present with a sex bias in occurrence and severity, yet the mechanisms responsible for these sex biases is a critically understudied area of basic research. Methods: Male and female C57BL/6 mice were exposed to multi-walled carbon nanotubes (MWCNTs) or crystalline silica (cSiO2) via oropharyngeal aspiration. Acute assessments were conducted 24 h and 7 days after a single exposure. In chronic experiments, mice were exposed to respective particles once per week for 4 weeks and sacrificed 8 weeks after the last exposure. Lung lavage fluid (LLF) was assessed for markers of injury and inflammation. Immune cell populations were analyzed by flow cytometry and histopathology assessment was performed on lung tissue from chronically exposed mice. Results: Female mice exposed to a single dose of MWCNTs generated a greater eosinophilic response than males 24 h and 7 days post-exposure. Eosinophilia was accompanied by elevated type 2 cytokine production in LLF. The exaggerated acute response in females was consistent with lung pathology observed in the chronic model: females had greater alveolitis and epithelial cell hyperplasia compared to males. There were no sex differences 24 h after cSiO2 exposure, but by 7-day post-exposure female mice had greater airspace neutrophilia and inflammatory cytokine levels compared to males. However, following repeated exposure to cSiO2, male mice had worse alveolitis and greater dendritic cell presence within the lungs. Conclusions: Female mice are more susceptible to acute and chronic MWCNT-induced inflammation, but male mice are more susceptible to chronic cSiO2-induced lung pathology.
Collapse
Affiliation(s)
- Jessica L Ray
- Center for Environmental Health Sciences, University of Montana , Missoula , MT , USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana , Missoula , MT , USA
| |
Collapse
|
6
|
Scoville DK, Nolin JD, Ogden HL, An D, Afsharinejad Z, Johnson BW, Bammler TK, Gao X, Frevert CW, Altemeier WA, Hallstrand TS, Kavanagh TJ. Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicol Appl Pharmacol 2019; 368:55-62. [PMID: 30682383 DOI: 10.1016/j.taap.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/19/2023]
Abstract
Quantum dot nanoparticles (QDs) are engineered nanomaterials (ENMs) that have utility in many industries due to unique optical properties not available in small molecules or bulk materials. QD-induced acute lung inflammation and toxicity in rodent models raise concerns about potential human health risks. Recent studies have also shown that some ENMs can exacerbate allergic airway disease (AAD). In this study, C57BL/6J and A/J mice were exposed to saline, house dust mite (HDM), or a combination of HDM and QDs on day 1 of the sensitization protocol. Mice were then challenged on days 8, 9 and 10 with HDM or saline only. Significant differences in cellular and molecular markers of AAD induced by both HDM and HDM + QD were observed between C57BL/6J and A/J mice. Among A/J mice, HDM + QD co-exposure, but not HDM exposure alone, significantly increased levels of bronchoalveolar lavage fluid (BALF). IL-33 compared to saline controls. BALF total protein levels in both mouse strains were also only significantly increased by HDM + QD co-exposure. In addition, A/J mice had significantly more lung type 2 innate lymphoid cells (ILC2s) cells than C57BL/6J mice. A/J lung ILC2s were inversely correlated with lung glutathione and MHC-IIhigh resident macrophages, and positively correlated with MHC-IIlow resident macrophages. The results from this study suggest that 1) QDs influence HDM-induced AAD by potentiating and/or enhancing select cytokine production; 2) that genetic background modulates the impact of QDs on HDM sensitization; and 3) that potential ILC2 contributions to HDM induced AAD are also likely to be modulated by genetic background.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - James D Nolin
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - H Luke Ogden
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Dowon An
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brian W Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Teal S Hallstrand
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Scoville DK, White CC, Botta D, An D, Afsharinejad Z, Bammler TK, Gao X, Altemeier WA, Kavanagh TJ. Quantum dot induced acute changes in lung mechanics are mouse strain dependent. Inhal Toxicol 2018; 30:397-403. [DOI: 10.1080/08958378.2018.1542046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David K. Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Collin C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Dowon An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Duke KS, Bonner JC. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1498. [PMID: 28984415 DOI: 10.1002/wnan.1498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Carbon nanotubes (CNTs) are engineered nanomaterials (ENMs) with numerous beneficial applications. However, they could pose a risk to human health from occupational or consumer exposures. Rodent models demonstrate that exposure to CNTs via inhalation, instillation, or aspiration results in pulmonary fibrosis. The severity of the fibrogenic response is determined by various physicochemical properties of the nanomaterial such as residual metal catalyst content, rigidity, length, aggregation status, or surface charge. CNTs are also increasingly functionalized post-synthesis with organic or inorganic agents to modify or enhance surface properties. The mechanisms of CNT-induced fibrosis involve oxidative stress, innate immune responses of macrophages, cytokine and growth factor production, epithelial cell injury and death, expansion of the pulmonary myofibroblast population, and consequent extracellular matrix accumulation. A comprehensive understanding of how physicochemical properties affect the fibrogenic potential of various types of CNTs should be considered in combination with genetic variability and gain or loss of function of specific genes encoding secreted cytokines, enzymes, or intracellular cell signaling molecules. Here, we cover the current state of the literature on mechanisms of CNT-exposed pulmonary fibrosis in rodent models with a focus on physicochemical characteristics as principal drivers of the mechanisms leading to pulmonary fibrosis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Katherine S Duke
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - James C Bonner
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Toledo-Arruda AC, Vieira RP, Guarnier FA, Suehiro CL, Caleman-Neto A, Olivo CR, Arantes PMM, Almeida FM, Lopes FDTQS, Ramos EMC, Cecchini R, Lin CJ, Martins MA. Time-course effects of aerobic physical training in the prevention of cigarette smoke-induced COPD. J Appl Physiol (1985) 2017; 123:674-683. [PMID: 28729393 DOI: 10.1152/japplphysiol.00819.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 11/22/2022] Open
Abstract
A previous study by our group showed that regular exercise training (ET) attenuated pulmonary injury in an experimental model of chronic exposure to cigarette smoke (CS) in mice, but the time-course effects of the mechanisms involved in this protection remain poorly understood. We evaluated the temporal effects of regular ET in an experimental model of chronic CS exposure. Male C57BL/6 mice were divided into four groups: Control (sedentary + air), Exercise (aerobic training + air), Smoke (sedentary + smoke), and Smoke + Exercise (aerobic training + smoke). Mice were exposed to CS and ET for 4, 8, or 12 wk. Exercise protected mice exposed to CS from emphysema and reductions in tissue damping and tissue elastance after 12 wk (P < 0.01). The total number of inflammatory cells in the bronchoalveolar lavage increased in the Smoke group, mainly due to the recruitment of macrophages after 4 wk, neutrophils and lymphocytes after 8 wk, and lymphocytes and macrophages after 12 wk (P < 0.01). Exercise attenuated this increase in mice exposed to CS. The protection conferred by exercise was mainly observed after exercise adaptation. Exercise increased IL-6 and IL-10 in the quadriceps and lungs (P < 0.05) after 12 wk. Total antioxidant capacity and SOD was increased and TNF-α and oxidants decreased in lungs of mice exposed to CS after 12 wk (P < 0.05). The protective effects of exercise against lung injury induced by cigarette smoke exposure suggests that anti-inflammatory mediators and antioxidant enzymes play important roles in chronic obstructive pulmonary disease development mainly after the exercise adaptation.NEW & NOTEWORTHY These experiments investigated for the first time the temporal effects of regular moderate exercise training in cigarette smoke-induced chronic obstructive pulmonary disease. We demonstrate that aerobic conditioning had a protective effect in emphysema development induced by cigarette smoke exposure. This effect was most likely secondary to an effect of exercise on oxidant-antioxidant balance and anti-inflammatory mediators.
Collapse
Affiliation(s)
| | - Rodolfo P Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, School of Medical Sciences Humanitas, Universidade Brasil and Laboratory of Pulmonary and Exercise Immunology, Nove de Julho University, Sao Paulo, Brazil
| | - Flávia A Guarnier
- Department of Pathology, Londrina State University, Londrina, Brazil; and
| | - Camila L Suehiro
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Agostinho Caleman-Neto
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Clarice R Olivo
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Petra M M Arantes
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Francine M Almeida
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ercy M C Ramos
- Department of Physiotherapy, State University of Sao Paulo, Presidente Prudente, Brazil
| | - Rubens Cecchini
- Department of Pathology, Londrina State University, Londrina, Brazil; and
| | - Chin Jia Lin
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Vandivort TC, Birkland TP, Domiciano TP, Mitra S, Kavanagh TJ, Parks WC. Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. Int J Nanomedicine 2017; 12:1019-1031. [PMID: 28223796 PMCID: PMC5304974 DOI: 10.2147/ijn.s123484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are nanomaterials composed of multiple layers of graphene cylinders with unique properties that make them valuable for a number of industries. However, rising global production has led to concerns regarding potential occupational exposures to them as raw materials during handling. This is especially true for long MWCNT fibers, whose aspect ratio has been posited to initiate pathology similar to that of asbestos. Matrix metalloproteinases (MMPs) are a class of extracellular endopeptidases that control various processes related to tissue repair, inflammation, and more. Stromelysin-2 (MMP-10) has roles in modulating macrophage activation and function, and hence, we used an MMP-10 null (Mmp10−/−) mouse model to assess its role in controlling lung responses to inhaled long MWCNTs. Oropharyngeal aspiration of long MWCNTs (80 µg/mouse) by wild-type mice induced expression of Mmp10 mRNA, which was accompanied by a robust inflammatory response characterized by elevated expression of Tnfa, Il6, and Il1b. In Mmp10−/− mice, we found that absence of MMP-10 led to impaired pulmonary clearance of MWCNTs and reduced macrophage cell survival. Exposure of wild-type bone marrow-derived macrophages (BMDMs) and alveolar macrophages to MWCNTs caused a rapid, dose-dependent upregulation of Mmp10 mRNA expression, which was accompanied by expression of pro-inflammatory products (Il6 and Il1b). These products were further enhanced in Mmp10−/− macrophages, resulting in increased caspase-3-dependent cell death compared with wild-type cells. These findings indicate that MMP-10 facilitates the clearance of MWCNTs and moderates the pro-inflammatory response of exposed alveolar and infiltrated macrophages.
Collapse
Affiliation(s)
- Tyler C Vandivort
- Cedars-Sinai Medical Center, Women's Guild Lung Institute, Los Angeles, CA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Timothy P Birkland
- Cedars-Sinai Medical Center, Women's Guild Lung Institute, Los Angeles, CA
| | | | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - William C Parks
- Cedars-Sinai Medical Center, Women's Guild Lung Institute, Los Angeles, CA
| |
Collapse
|