1
|
Ni W, Niu Y, Cao S, Fan C, Fan J, Zhu L, Wang X. Intermittent hypoxia exacerbates anxiety in high-fat diet-induced diabetic mice by inhibiting TREM2-regulated IFNAR1 signaling. J Neuroinflammation 2024; 21:166. [PMID: 38956653 PMCID: PMC11218348 DOI: 10.1186/s12974-024-03160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.
Collapse
MESH Headings
- Animals
- Mice
- Diet, High-Fat/adverse effects
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Anxiety/etiology
- Anxiety/metabolism
- Signal Transduction/physiology
- Signal Transduction/drug effects
- Hypoxia/metabolism
- Hypoxia/complications
- Male
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Microglia/metabolism
- STAT1 Transcription Factor/metabolism
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/metabolism
- Sleep Apnea, Obstructive/psychology
Collapse
Affiliation(s)
- Wenyu Ni
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Yun Niu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sitong Cao
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunsun Fan
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Jian Fan
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Medical Research Center Affiliated Hospital 2 of Nantong University, Nantong, China.
| |
Collapse
|
2
|
Wang X, Xie Y, Fan X, Wu X, Wang D, Zhu L. Intermittent hypoxia training enhances Aβ endocytosis by plaque associated microglia via VPS35-dependent TREM2 recycling in murine Alzheimer's disease. Alzheimers Res Ther 2024; 16:121. [PMID: 38831312 PMCID: PMC11145795 DOI: 10.1186/s13195-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Beta-amyloid (Aβ) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aβ deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aβ (oAβ) clearance. Considering that oAβ internalization is the initial stage of oAβ clearance, this study focused on the IHT mechanism involved in upregulating Aβ uptake by DAM. METHODS IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aβ plaque deposition, and Aβ load in the brain. A model of Aβ-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aβ internalization were measured using a fluorescence tracing technique. RESULTS Our results showed that IHT ameliorated cognitive function and Aβ pathology. In particular, IHT enhanced Aβ endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aβ clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aβ pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION IHT enhances Aβ endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAβ clearance and mitigation of Aβ pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| |
Collapse
|
3
|
Zylberberg B, Poodts M, Roncoroni J, Coronel MF, Mazzone GL. Resveratrol evokes neuroprotective effects and improves foot stance following kainate-induced excitotoxic damage to the mouse spinal cord. Neuropharmacology 2024; 250:109906. [PMID: 38494123 DOI: 10.1016/j.neuropharm.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Excitotoxicity, characterized by over-activation of glutamate receptors, is a major contributor to spinal cord injury (SCI) pathophysiology, resulting in neuronal death and loss of locomotor function. In our previous in vitro studies, we showed that excitotoxicity induced by the glutamate analogue kainate (KA) leads to a significant reduction in the number of neurons, providing a model for SCI. Our current objective was to assess the neuroprotective role of resveratrol (RESV), a natural polyphenol, following KA-induced SCI. In vivo excitotoxicity was induced by intraspinal injection of KA immediately followed by RESV administration to Balb/C adult male mice. In neonatal mouse spinal cord preparations, excitotoxicity was transiently induced by bath-applied KA, either with or without RESV. KA administration resulted in a significant deterioration in hindlimb motor coordination and balance during locomotion, which was partially reverted by RESV. Additionally, RESV preserved neurons in both dorsal and ventral regions. Sirtuin 2 (SIRT2) immunoreactive signal was increased by RESV, while the selective SIRT1 inhibitor 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (EX-527) attenuated RESV neuroprotective effects. These findings suggest that RESV attenuation of excitotoxic-induced neuronal loss and locomotor deficits is mediated, at least in part, through the activation of SIRT1, potentially involving SIRT2 as well. Indeed, our results highlight the potential use of RESV to enhance neuroprotective strategies for SCI.
Collapse
Affiliation(s)
- Benjamín Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Martina Poodts
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Julieta Roncoroni
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - M Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Wang X, Xie Y, Chen G, Lu Y, Wang D, Zhu L. Intermittent hypoxia therapy ameliorates beta-amyloid pathology via TFEB-mediated autophagy in murine Alzheimer's disease. J Neuroinflammation 2023; 20:240. [PMID: 37864249 PMCID: PMC10588168 DOI: 10.1186/s12974-023-02931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown. METHODS 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aβ plaque deposition, pro-inflammatory factors, and the content of Aβ in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aβ 1-42 (oAβ) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAβ was traced by immunofluorescence. RESULTS In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aβ) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aβ accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aβ autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aβ degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway. CONCLUSIONS These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aβ clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Guijuan Chen
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China.
| |
Collapse
|
5
|
Wang X, Xie Y, Niu Y, Wan B, Lu Y, Luo Q, Zhu L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front Cell Neurosci 2023; 17:1189348. [PMID: 37234914 PMCID: PMC10206058 DOI: 10.3389/fncel.2023.1189348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.
Collapse
|
6
|
Jia R, Liu Y, Shuai K, Zhou C, Chen L, Zhu L, Wu XM. The Relationship between Iron and LRRK2 in a 6-OHDA-Induced Parkinson's Disease Model. Int J Mol Sci 2023; 24:ijms24043709. [PMID: 36835121 PMCID: PMC9964371 DOI: 10.3390/ijms24043709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is very complex and still needs further exploration. Leucine-rich repeat kinase 2 (LRRK2) is associated with familial PD in mutant forms and sporadic PD in the wild-type form. Abnormal iron accumulation is found in the substantia nigra of PD patients, but its exact effects are not very clear. Here, we show that iron dextran exacerbates the neurological deficit and loss of dopaminergic neurons in 6-OHDA lesioned rats. 6-OHDA and ferric ammonium citrate (FAC) significantly increase the activity of LRRK2 as reflected by the phosphorylation of LRRK2, at S935 and S1292 sites. 6-OHDA-induced LRRK2 phosphorylation is attenuated by the iron chelator deferoxamine, especially at the S1292 site. 6-OHDA and FAC markedly induce the expression of pro-apoptotic molecules and the production of ROS by activating LRRK2. Furthermore, G2019S-LRRK2 with high kinase activity showed the strongest absorptive capacity for ferrous iron and the highest intracellular iron content among WT-LRRK2, G2019S-LRRK2, and kinase-inactive D2017A-LRRK2 groups. Taken together, our results demonstrate that iron promotes the activation of LRRK2, and active LRRK2 accelerates ferrous iron uptake, suggesting that there exists an interplay between iron and LRRK2 in dopaminergic neurons, providing a new perspective to uncover the underlying mechanisms of PD occurrence.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Zhu
- Correspondence: (L.Z.); (X.-M.W.)
| | | |
Collapse
|
7
|
Chen G, Cheng K, Niu Y, Zhu L, Wang X. (-)-Epicatechin gallate prevents inflammatory response in hypoxia-activated microglia and cerebral edema by inhibiting NF-κB signaling. Arch Biochem Biophys 2022; 729:109393. [PMID: 36084697 DOI: 10.1016/j.abb.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
High-altitude cerebral edema (HACE), a potentially lethal disease, is associated with a time-dependent exposure to altitude-related hypobaric hypoxia (HH) and has reportedly been associated with microglia hyperactivation. Catechins are substances with good antioxidant properties, among which (-)-epigallocatechin gallate (EGCG) may play a neuroprotective role through the inhibition of microglia overactivation; however, the function of its analog- (-)-epicatechin gallate (ECG)-requires further elucidation. The aim of the present study was to investigate whether ECG prevented HACE by inhibiting HH-activated microglia. Primary microglia exposed to lipopolysaccharide (LPS)/ATP were co-treated with EGCG, ECG, and (-)-epigallocatechin, and ECG and EGCG exerted significant anti-inflammatory and neuroprotective effects. ECG inhibited the NF-κB pathway to prevent the activation of microglia induced by 1% O2. In addition, ECG ameliorated the increase in brain water content and aquaporin 4 expression induced by HH in mice. ECG also reduced the number of Iba1+ microglia in the brain, the release of proinflammatory factors, and the recruitment of microglia to blood vessels in HH-exposed mice. The outcomes of the present study revealed that ECG alleviated hypoxic hyperactivated microglia, reduced the neuroinflammation and blood-brain barrier permeability, and prevented HACE by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Guijuan Chen
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Niu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
8
|
Transcriptional regulation of NRF1 on metabotropic glutamate receptors in a neonatal hypoxic‑ischemic encephalopathy rat model. Pediatr Res 2022:10.1038/s41390-022-02353-9. [PMID: 36280709 DOI: 10.1038/s41390-022-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is a kind of brain injury that causes severe neurological disorders in newborns. Metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs) are significantly associated with HIE and are involved in ischemia-induced excitotoxicity. This study aimed to investigate the upstream mechanisms of mGluRs and the transcriptional regulation by nuclear respiratory factor 1 (NRF1). METHODS The rat model of neonatal HIE was created using unilateral carotid artery ligation and in vitro oxygen-glucose deprivation paradigm. We used western blot, immunofluorescence, Nissl staining, and Morris water maze to investigate the impact of NRF1 on brain damage and learning memory deficit by HIE. We performed ChIP and luciferase activities to identify the transcriptional regulation of NRF1 on mGluRs. RESULTS The neuronal NRF1 and some glutamatergic genes expression synchronously declined in infarcted tissues. The NRF1 overexpression effectively restored the expression of some glutamatergic genes and improved cognitive performance. NRF1 regulated some members of mGluRs and iGluRs in hypoxic-ischemic neurons. Finally, NRF1 is bound to the promoter regions of Grm1, Grm2, and Grm8 to activate their transcription. CONCLUSIONS NRF1 is involved in the pathology of the neonatal HIE rat model, suggesting a novel therapeutic approach to neonatal HIE. IMPACT NRF1 and some glutamatergic genes were synchronously downregulated in the infarcted brain of the neonatal HIE rat model. NRF1 overexpression could rescue cognitive impairment caused by the neonatal HIE rat model. NRF1 regulated the expressions of Grm1, Grm2, and Grm8, which activated their transcription by binding to the promoter regions.
Collapse
|
9
|
Wang X, Chen G, Wan B, Dong Z, Xue Y, Luo Q, Wang D, Lu Y, Zhu L. NRF1-mediated microglial activation triggers high-altitude cerebral edema. J Mol Cell Biol 2022; 14:6608944. [PMID: 35704676 PMCID: PMC9486928 DOI: 10.1093/jmcb/mjac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
High-altitude cerebral edema (HACE) is a potentially fatal encephalopathy associated with a time-dependent exposure to the hypobaric hypoxia of altitude. The formation of HACE is affected by both vasogenic and cytotoxic edema. The over-activated microglia potentiate the damage of blood-brain barrier (BBB) and exacerbate cytotoxic edema. In light with the activation of microglia in HACE, we aimed to investigate whether the over-activated microglia were the key turning point of acute mountain sickness to HACE. In in vivo experiments, by exposing mice to hypobaric hypoxia (7000 m above sea level) to induce HACE model, we found that microglia were activated and migrated to blood vessels. Microglia depletion by PLX5622 obviously relieved brain edema. In in vitro experiments, we found that hypoxia induced cultured microglial activation, leading to the destruction of endothelial tight junction and astrocyte swelling. Up-regulated nuclear respiratory factor 1 (NRF1) accelerated pro-inflammatory factors through transcriptional regulation on nuclear factor kappa B p65 (NF-κB p65) and mitochondrial transcription factor A (TFAM) in activated microglia under hypoxia. NRF1 also up-regulated phagocytosis by transcriptional regulation on caveolin-1 (CAV-1) and adaptor-related protein complex 2 subunit beta (AP2B1). The present study reveals a new mechanism in HACE: hypoxia over-activates microglia through up-regulation of NRF1, which both induces inflammatory response through transcriptionally activating NF-κB p65 and TFAM, and enhances phagocytic function through up-regulation of CAV-1 and AP2B1; hypoxia-activated microglia destroy the integrity of BBB and release pro-inflammatory factors that eventually induce HACE.
Collapse
Affiliation(s)
| | - Guijuan Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhangji Dong
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226019, China
| | - Yan Xue
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Li Zhu
- Correspondence to: Li Zhu, E-mail:
| |
Collapse
|
10
|
Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021; 910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.
Collapse
Affiliation(s)
- Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Zhou H, Hu L, Li J, Ruan W, Cao Y, Zhuang J, Xu H, Peng Y, Zhang Z, Xu C, Yu Q, Li Y, Dou Z, Hu J, Wu X, Yu X, Gu C, Cao S, Yan F, Chen G. AXL kinase-mediated astrocytic phagocytosis modulates outcomes of traumatic brain injury. J Neuroinflammation 2021; 18:154. [PMID: 34233703 PMCID: PMC8264993 DOI: 10.1186/s12974-021-02201-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Complex changes in the brain microenvironment following traumatic brain injury (TBI) can cause neurological impairments for which there are few efficacious therapeutic interventions. The reactivity of astrocytes is one of the keys to microenvironmental changes, such as neuroinflammation, but its role and the molecular mechanisms that underpin it remain unclear. Methods Male C57BL/6J mice were subjected to the controlled cortical impact (CCI) to develop a TBI model. The specific ligand of AXL receptor tyrosine kinase (AXL), recombinant mouse growth arrest-specific 6 (rmGas6) was intracerebroventricularly administered, and selective AXL antagonist R428 was intraperitoneally applied at 30 min post-modeling separately. Post-TBI assessments included neurobehavioral assessments, transmission electron microscopy, immunohistochemistry, and western blotting. Real-time polymerase chain reaction (RT-PCR), siRNA transfection, and flow cytometry were performed for mechanism assessments in primary cultured astrocytes. Results AXL is upregulated mainly in astrocytes after TBI and promotes astrocytes switching to a phenotype that exhibits the capability of ingesting degenerated neurons or debris. As a result, this astrocytic transformation promotes the limitation of neuroinflammation and recovery of neurological dysfunction. Pharmacological inhibition of AXL in astrocytes significantly decreased astrocytic phagocytosis both in vivo and in primary astrocyte cultures, in contrast to the effect of treatment with the rmGas6. AXL activates the signal transducer and activator of the transcription 1 (STAT1) pathway thereby further upregulating ATP-binding cassette transporter 1 (ABCA1). Moreover, the supernatant from GAS6-depleted BV2 cells induced limited enhancement of astrocytic phagocytosis in vitro. Conclusion Our work establishes the role of AXL in the transformation of astrocytes to a phagocytic phenotype via the AXL/STAT1/ABCA1 pathway which contributes to the separation of healthy brain tissue from injury-induced cell debris, further ameliorating neuroinflammation and neurological impairments after TBI. Collectively, our findings provide a potential therapeutic target for TBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02201-3.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Wu Ruan
- Department of Burn and Plastic Surgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Zhejiang, 310052, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Zhejiang, 310052, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Qian Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Yin Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Junwen Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Xinyan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Xiaobo Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Chi Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China.
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China.
| |
Collapse
|
12
|
Wu XM, Qian C, Jiang F, Bao YX, Qian ZM, Ke Y. The involvement of nuclear factor-κB in astroprotection against ischemia-reperfusion injury by ischemia-preconditioned neurons. J Cell Physiol 2021; 236:4515-4527. [PMID: 33442879 DOI: 10.1002/jcp.30168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioned (IP) neurons protect astrocytes against ischemia/reperfusion (I/R)-induced injury by inhibiting oxidative stress. However, the relevant mechanisms are unknown. Based on the role of nuclear factor-κB (NF-κB) in cell survival and adaption to oxidative stress, we hypothesized that NF-κB might be associated with astroprotection induced by IP neurons via upregulation of antioxidant enzymes. Here, we investigated the effects of IP neurons on NF-κB activation, cell viability, reactive oxygen species (ROS), expression of antioxidant enzymes, erythropoietin (EPO), and tumor necrosis factor α (TNF-α), in the presence or absence of BAY11-7082 (an NF-κB inhibitor), anti-EPO, and anti-TNF-α antibodies, in astrocytes treated with or without I/R. We found that IP neurons could keep NF-κB activation at a relatively higher but beneficial level, and in turn, upregulated the activity of antioxidant enzymes and hence enhanced cell viability and reduced ROS in I/R treated astrocytes. The results collectively indicated that IP neurons are able to significantly inhibit the I/R-induced NF-κB overactivation, probably via EPO and TNF-α, being essential for IP neuron-induced astroprotection under the conditions of I/R. We concluded that NF-κB-mediated antioxidative stress is one of the mechanisms by which IP neurons protect astrocytes against I/R injury.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Fei Jiang
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
13
|
Lu S, Yang Y, Liao L, Yan W, Xiong K, Yan J. iTRAQ-based proteomic analysis of the rat striatum in response to methamphetamine preconditioning. Acta Biochim Biophys Sin (Shanghai) 2021; 53:636-639. [PMID: 33742667 DOI: 10.1093/abbs/gmab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yandi Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jie Yan
- School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
- Forensic Science, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
14
|
Amtul Z, Najdat AN, Hill DJ, Arany EJ. Differential temporal and spatial post-injury alterations in cerebral cell morphology and viability. J Comp Neurol 2020; 529:421-433. [PMID: 32447764 DOI: 10.1002/cne.24955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Combination of ischemia and β-amyloid (Aβ) toxicity has been shown to simultaneously increase neuro-inflammation, endogenous Aβ deposition, and neurodegeneration. However, studies on the evolution of infarct and panorama of cellular degeneration as a synergistic or overlapping mechanism between ischemia and Aβ toxicity are lacking. Here, we compared fluorojade B (FJB) and hematoxylin and eosin (H&E) stains primarily to examine the chronology of infarct, and the viability and morphological changes in neuroglia and neurons located in different brain regions on d1, d7, and d28 post Aβ toxicity and endothelin-1 induced ischemia (ET1) in rats. We demonstrated a regional difference in cellular degeneration between cortex, corpus callosum, striatum, globus pallidus, and thalamus after cerebral injury. Glial cells in the cortex and corpus callosum underwent delayed FJB staining from d7 to d28, but neurons in cortex disappeared within the first week of cerebral injury. Striatal lesion core and globus pallidus of Aβ + ET1 rats showed extensive degeneration of neuronal cells compared with ET1 rats alone starting from d1. Differential and exacerbated expressions of cyclooxygenase-2 might be the cause of excessive neuronal demise in the striatum of Aβ + ET1 rats. Such an investigation may improve our understanding to identify and manipulate a critical therapeutic window post comorbid injury.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Canada
| |
Collapse
|
15
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
16
|
Wang X, Feng L, Xin M, Hao Y, Wang X, Shang P, Zhao M, Hou S, Zhang Y, Xiao Y, Ma D, Feng J. Mechanisms underlying astrocytic connexin-43 autophagy degradation during cerebral ischemia injury and the effect on neuroinflammation and cell apoptosis. Biomed Pharmacother 2020; 127:110125. [PMID: 32361163 DOI: 10.1016/j.biopha.2020.110125] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Connexin-43 (Cx43) is the most abundant gap junction protein in the nervous system. It enables cell communication and has important physiological roles including ion transport and substrate exchange, all of which have been implicated in cerebral ischemia injury. Our previous in vitro and in vivo studies have demonstrated that Cx43 is internalized and degraded during ischemia stress. However, the significance of ischemia-induced degradation of Cx43 remains unclear. Herein, we demonstrated that Cx43 degradation during ischemia injury is mediated by selective autophagy; additionally, we identified two related autophagy receptors-OPTN and NDP52. Cx43 degradation during ischemia requires its phosphorylation and ubiquitination, which are mediated by PKC, Src kinases, and ubiquitin kinase PINK1. Using point mutagenesis, we identified three phosphorylation sites underlying Cx43 autophagy degradation under ischemic stress. Cx43 degradation inhibition promoted the transition of astrocytes from a pro-inflammatory to an anti-inflammatory status, based on the levels of IL-10 and TNF in ischemia. Knockdown or accelerated degradation of Cx43 protected astrocytes from apoptosis under ischemic stress. These findings elucidate the underlying mechanism of astrocytic Cx43 autophagic degradation during ischemia. The study has identified potentially novel therapeutic strategies against ischemic stroke and evidence of crosstalk between autophagic degradation of Cx43, astrocytic apoptosis, and neuroinflammation.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Liangshu Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Meiying Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yulei Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Pei Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Mingming Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Hou
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunhai Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Street, Suzhou 215163, China
| | - Yun Xiao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Street, Suzhou 215163, China
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Gonzalez A. Antioxidants and Neuron-Astrocyte Interplay in Brain Physiology: Melatonin, a Neighbor to Rely on. Neurochem Res 2020; 46:34-50. [PMID: 31989469 DOI: 10.1007/s11064-020-02972-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
This manuscript is a review focused onto the role of astrocytes in the protection of neurons against oxidative stress and how melatonin can contribute to the maintenance of brain homeostasis. The first part of the review is dedicated to the dependence of neurons on astrocytes by terms of survival under oxidative stress conditions. Additionally, the effects of melatonin against oxidative stress in the brain and its putative role in the protection against diseases affecting the brain are highlighted. The effects of melatonin on the physiology of neurons and astrocytes also are reviewed.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, 10003, Cáceres, Spain.
| |
Collapse
|
18
|
Hausburg MA, Banton KL, Roman PE, Salgado F, Baek P, Waxman MJ, Tanner A, Yoder J, Bar-Or D. Effects of propofol on ischemia-reperfusion and traumatic brain injury. J Crit Care 2019; 56:281-287. [PMID: 32001426 DOI: 10.1016/j.jcrc.2019.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress exacerbates brain damage following ischemia-reperfusion and traumatic brain injury (TBI). Management of TBI and critically ill patients commonly involves use of propofol, a sedation medication that acts as a general anesthetic with inherent antioxidant properties. Here we review available evidence from animal model systems and clinical studies that propofol protects against ischemia-reperfusion injury. However, evidence of propofol toxicity in humans exists and manifests as a rare complication, "propofol infusion syndrome" (PRIS). Evidence in animal models suggests that brain injury induces expression of the p75 neurotrophin receptor (p75NTR), which is associated with proapoptotic signaling. p75NTR-mediated apoptosis of neurons is further exacerbated by propofol's superinduction of p75NTR and concomitant inhibition of neurotrophin processing. Propofol is toxic to neurons but not astrocytes, a type of glial cell. Evidence suggests that propofol protects astrocytes from oxidative stress and stimulates astroglial-mediated protection of neurons. One may speculate that in brain injury patients under sedation/anesthesia, propofol provides brain tissue protection or aids in recovery by enhancing astrocyte function. Nevertheless, our understanding of neurologic recovery versus long-term neurological sequelae leading to neurodegeneration is poor, and it is also conceivable that propofol plays a partial as yet unrecognized role in long-term impairment of the injured brain.
Collapse
Affiliation(s)
- Melissa A Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA; Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA; Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132, USA; Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA
| | - Kaysie L Banton
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA
| | - Phillip E Roman
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Department of Anesthesiology, St. Anthony Hospital, Lakewood, CO 80228, USA
| | - Fernando Salgado
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA; Department of Anesthesiology, Wesley Medical Center, Wichita, KS 67214, USA
| | - Peter Baek
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Department of Anesthesiology, Medical City Plano, Plano, TX 75075, USA
| | - Michael J Waxman
- Department of Critical Care, Research Medical Center, Kansas City, MO 64132, USA
| | - Allen Tanner
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
| | - Jeffrey Yoder
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Department of Anesthesiology, St. Anthony Hospital, Lakewood, CO 80228, USA
| | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA; Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA; Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132, USA; Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA; Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO 80134, USA.
| |
Collapse
|
19
|
Chen X, Xi Z, Liang H, Sun Y, Zhong Z, Wang B, Bian L, Sun Q. Melatonin Prevents Mice Cortical Astrocytes From Hemin-Induced Toxicity Through Activating PKCα/Nrf2/HO-1 Signaling in vitro. Front Neurosci 2019; 13:760. [PMID: 31404262 PMCID: PMC6669962 DOI: 10.3389/fnins.2019.00760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Secondary injuries mediated by oxidative stress lead to deterioration of neurological functions after intracerebral hemorrhage (ICH). Cortical astrocytes are among the most important cells in the central nervous system (CNS), and play key roles in maintaining redox homeostasis by providing oxidative stress defense. Hemin is a product of hemoglobin degradation, which has strong toxicity and can induce reactive oxygen species (ROS). Melatonin (Mel) and its metabolites are well tolerated without toxicity, prevent tissue damage as well as effectively assist in scavenging free radicals. We evaluated the hemin neurotoxicity to astrocytes and the resistance of Mel-treated astrocytes to hemin neurotoxicity. And we found Mel induced PKCα phosphorylation (p-PKC), nuclear translocation of Nrf2 in astrocytes, and upregulation of HO-1, which contributed to the reduction of ROS accumulation and cell apoptosis. Nrf2 and HO1 protein expression upregulated by Mel were decreased after administration of PKC inhibitor, Ro 31-8220 (Ro 31). Luzindole (Luz), a melatonin receptor inhibitor, suppressed p-PKCα, HO-1, and Nrf2 expression upregulated by Mel and increased cell apoptosis rate. The upregulation of HO-1 induced by Mel was depressed by knocking down Nrf2 expression by siRNA, which also decreased the resistance of astrocytes to toxicity of hemin. Mel activates astrocytes through PKCα/Nrf2/HO-1 signaling pathway to acquire resistance to toxicity of hemin and resist from oxidative stress and apoptosis. The positive effect of Mel on PKCα/Nrf2/HO-1 signaling pathway may become a new target for neuroprotection after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huaibin Liang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurosurgery, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
21
|
Magaki SD, Williams CK, Vinters HV. Glial function (and dysfunction) in the normal & ischemic brain. Neuropharmacology 2018; 134:218-225. [PMID: 29122627 PMCID: PMC6132239 DOI: 10.1016/j.neuropharm.2017.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/20/2022]
Abstract
Astrocytes are the most abundant cell type in the central nervous system (CNS). Once considered to be of fairly homogeneous phenotype throughout the brain and spinal cord, they are now understood to be heterogeneous in both structure and function. They are important in brain functions as diverse as ion and fluid balance in the interstitial space, contributing to integrity of the neurovascular unit (blood-brain barrier), neurotransmitter regulation, metabolism of energy substrates and possibly even axonal regeneration. After ischemic or hemorrhagic brain/spinal cord injury, formation of an astrocytic scar adjacent to the 'lesion' is a characteristic histopathologic feature, and this astrogliosis can be demonstrated by immunohistochemistry, usually using primary antibodies to glial fibrillary acidic protein (GFAP). Astrocytes interact with microglia and oligodendroglia in novel ways that will be discussed in this review. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Shino D Magaki
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA, USA; Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA.
| | - Christopher K Williams
- Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA.
| |
Collapse
|
22
|
Yang Y, Xi Z, Xue Y, Ren J, Sun Y, Wang B, Zhong Z, Yang GY, Sun Q, Bian L. Hemoglobin pretreatment endows rat cortical astrocytes resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. Exp Cell Res 2017; 361:217-224. [PMID: 29074371 DOI: 10.1016/j.yexcr.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022]
Abstract
Oxidative stress mediated secondary injury contributes to neurological deterioration after intracerebral hemorrhage (ICH). Astrocytes, the most dominant cells in the central nervous system (CNS), play key roles in maintaining redox homeostasis by providing oxidative stress defense. Hemoglobin (Hb), the primary component released by hemolysis, is an effective activator of astrocytes. Hemin, the product of Hb degradation, is highly toxic due to the induction of reactive oxygen species (ROS). We speculate that Hb-activated astrocytes are resistant to hemin-induced toxicity. To verify our speculation, Hb-pretreated astrocytes were exposed to hemin, intracellular ROS accumulation and cell apoptosis were evaluated. Heme oxygenase 1 (HO-1) and nuclear transcription factor-erythroid 2 related factor (Nrf2) expression were observed to explore the potential mechanism. The results demonstrated that Hb induced upregulation and nuclear translocation of Nrf2 in astrocytes, resulted in HO-1 upregulation, which contributed to reduced ROS accumulation and apoptosis rate. Knocking down Nrf2 expression by siRNA suppressed Hb-induced upregulation of HO-1 expression and increased the susceptibility of Hb-pretreated astrocytes to hemin-induced toxicity. Taken together, Hb-activated astrocytes acquired resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. This phenomenon can be considered as the adaptive self-defense in the pathological process of ICH. Hb pre-warned astrocytes and enhanced their capability of handling the coming hemin "flood". Nrf2/HO-1 may be employed as a target for neuroprotection after ICH.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuan Xue
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212000, China
| | - Jie Ren
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Department of Neurosurgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|