1
|
Jackson MJ. Reactive oxygen species in age-related musculoskeletal decline: implications for nutritional intervention. Proc Nutr Soc 2024:1-9. [PMID: 39512110 DOI: 10.1017/s0029665124004877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Musculoskeletal disorders and age-related musculoskeletal decline are major contributors to the burden of ill health seen in older subjects. Despite this increased burden, these chronic disorders of old age receive a relatively small proportion of national research funds. Much has been learned about fundamental processes involved in ageing from basic science research and this is leading to identification of key pathways that mediate ageing which may help the search for interventions to reduce age-related musculoskeletal decline. This short review will focus on the role of reactive oxygen species in age-related skeletal muscle decline and on the implications of this work for potential nutritional interventions in sarcopenia. The key physiological role of reactive oxygen species is now known to be in mediating redox signalling in muscle and other tissues and ageing leads to disruption of such pathways. In muscle, this is reflected in an age-related attenuation of specific adaptations and responses to contractile activity that impacts the ability of skeletal muscle from ageing individuals to respond to exercise. These pathways provides potential targets for identification of logical interventions that may help maintain muscle mass and function during ageing.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Mehrotra P, Jablonski J, Toftegaard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo KCS, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun 2024; 15:9218. [PMID: 39455585 PMCID: PMC11511891 DOI: 10.1038/s41467-024-53276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kelly C S Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary, Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| | - Kirkwood E Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Singh G, Singh K, Sinha RA, Singh A, Khushi, Kumar A. Japanese encephalitis virus infection causes reactive oxygen species-mediated skeletal muscle damage. Eur J Neurosci 2024; 60:4843-4860. [PMID: 39049535 DOI: 10.1111/ejn.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.
Collapse
Affiliation(s)
- Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kulwant Singh
- Stem Cell Research Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anjali Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khushi
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
5
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
6
|
Xu X, Zhang CJ, Talifu Z, Liu WB, Li ZH, Wang XX, Du HY, Ke H, Yang DG, Gao F, Du LJ, Yu Y, Jing YL, Li JJ. The Effect of Glycine and N-Acetylcysteine on Oxidative Stress in the Spinal Cord and Skeletal Muscle After Spinal Cord Injury. Inflammation 2024; 47:557-571. [PMID: 37975960 DOI: 10.1007/s10753-023-01929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Oxidative stress is a frequently occurring pathophysiological feature of spinal cord injury (SCI) and can result in secondary injury to the spinal cord and skeletal muscle atrophy. Studies have reported that glycine and N-acetylcysteine (GlyNAC) have anti-aging and anti-oxidative stress properties; however, to date, no study has assessed the effect of GlyNAC in the treatment of SCI. In the present work, we established a rat model of SCI and then administered GlyNAC to the animals by gavage at a dose of 200 mg/kg for four consecutive weeks. The BBB scores of the rats were significantly elevated from the first to the eighth week after GlyNAC intervention, suggesting that GlyNAC promoted the recovery of motor function; it also promoted the significant recovery of body weight of the rats. Meanwhile, the 4-week heat pain results also suggested that GlyNAC intervention could promote the recovery of sensory function in rats to some extent. Additionally, after 4 weeks, the levels of glutathione and superoxide dismutase in spinal cord tissues were significantly elevated, whereas that of malondialdehyde was significantly decreased in GlyNAC-treated animals. The gastrocnemius wet weight ratio and total antioxidant capacity were also significantly increased. After 8 weeks, the malondialdehyde level had decreased significantly in spinal cord tissue, while reactive oxygen species accumulation in skeletal muscle had decreased. These findings suggested that GlyNAC can protect spinal cord tissue, delay skeletal muscle atrophy, and promote functional recovery in rats after SCI.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250100, Shandong Province, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250100, Shandong Province, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China.
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
7
|
Schmich SKP, Keck J, Bonaterra GA, Bertoune M, Adam A, Wilhelm B, Slater EP, Schwarzbach H, Fendrich V, Kinscherf R, Hildebrandt W. Effects of Monoamino-Oxidase-A (MAO-A) Inhibition on Skeletal Muscle Inflammation and Wasting through Pancreatic Ductal Adenocarcinoma in Triple Transgenic Mice. Biomedicines 2023; 11:biomedicines11030912. [PMID: 36979889 PMCID: PMC10046345 DOI: 10.3390/biomedicines11030912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer cachexia describes a syndrome of muscle wasting and lipolysis that is still largely untreatable and negatively impacts prognosis, mobility, and healthcare costs. Since upregulation of skeletal muscle monoamine-oxidase-A (MAO-A), a source of reactive oxygen species, may contribute to cachexia, we investigated the effects of the MAO-inhibitor harmine-hydrochloride (HH, intraperitoneal, 8 weeks) on muscle wasting in a triple-transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC) and wild type (WT) mice. Gastrocnemius and soleus muscle cryo-cross-sections were analyzed for fiber type-specific cross-sectional area (CSA), fraction and capillarization using ATPase- and lectin-stainings. Transcripts of pro-apoptotic, -atrophic, and -inflammatory signals were determined by RT-qPCR. Furthermore, we evaluated the integrity of neuromuscular junction (NMJ, pre-/post-synaptic co-staining) and mitochondrial ultrastructure (transmission electron microscopy). MAO-A expression in gastrocnemius muscle was increased with PDAC vs. WT (immunohistochemistry: p < 0.05; Western blot: by trend). PDAC expectedly reduced fiber CSA and upregulated IL-1β in both calf muscles, while MuRF1 expression increased in soleus muscle only. Although IL-1β decreased, HH caused an additional 38.65% (p < 0.001) decrease in gastrocnemius muscle (IIBX) fiber CSA. Moreover, soleus muscle CSA remained unchanged despite the downregulation of E3-ligases FBXO32 (p < 0.05) and MuRF1 (p < 0.01) through HH. Notably, HH significantly decreased the post-synaptic NMJ area (quadriceps muscle) and glutathione levels (gastrocnemius muscle), thereby increasing mitochondrial damage and centronucleation in soleus and gastrocnemius type IIBX fibers. Moreover, although pro-atrophic/-inflammatory signals are reversed, HH unfortunately fails to stop and rather promotes PDAC-related muscle wasting, possibly via denervation or mitochondrial damage. These differential adverse vs. therapeutic effects warrant studies regarding dose-dependent benefits and risks with consideration of other targets of HH, such as the dual-specificity tyrosine phosphorylation regulated kinases 1A and B (DYRK1A/B).
Collapse
Affiliation(s)
- Simon K. P. Schmich
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Jan Keck
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Gabriel A. Bonaterra
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Mirjam Bertoune
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Anna Adam
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Beate Wilhelm
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Hans Schwarzbach
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Ralf Kinscherf
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Wulf Hildebrandt
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-2864042; Fax: +49-6421-2868983
| |
Collapse
|
8
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
9
|
Scalabrin M, Engman V, Maccannell A, Critchlow A, Roberts LD, Yuldasheva N, Bowen TS. Temporal analysis of skeletal muscle remodeling post hindlimb ischemia reveals intricate autophagy regulation. Am J Physiol Cell Physiol 2022; 323:C1601-C1610. [PMID: 36252128 PMCID: PMC9722248 DOI: 10.1152/ajpcell.00174.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hind limb ischemia (HLI) is the most severe form of peripheral arterial disease, associated with a substantial reduction of limb blood flow that impairs skeletal muscle homeostasis to promote functional disability. The molecular regulators of HLI-induced muscle perturbations remain poorly defined. This study investigated whether changes in the molecular catabolic-autophagy signaling network were linked to temporal remodeling of skeletal muscle in HLI. HLI was induced in mice via hindlimb ischemia (femoral artery ligation) and confirmed by Doppler echocardiography. Experiments were terminated at time points defined as early- (7 days; n = 5) or late- (28 days; n = 5) stage HLI. Ischemic and nonischemic (contralateral) limb muscles were compared. Ischemic versus nonischemic muscles demonstrated overt remodeling at early-HLI but normalized at late-HLI. Early-onset fiber atrophy was associated with excessive autophagy signaling in ischemic muscle; protein expression increased for Beclin-1, LC3, and p62 (P < 0.05) but proteasome-dependent markers were reduced (P < 0.05). Mitophagy signaling increased in early-stage HLI that aligned with an early and sustained loss of mitochondrial content (P < 0.05). Upstream autophagy regulators, Sestrins, showed divergent responses during early-stage HLI (Sestrin2 increased while Sestrin1 decreased; P < 0.05) in parallel to increased AMP-activated protein kinase (AMPK) phosphorylation (P < 0.05) and lower antioxidant enzyme expression. No changes were found in markers for mechanistic target of rapamycin complex 1 signaling. These data indicate that early activation of the sestrin-AMPK signaling axis may regulate autophagy to stimulate rapid and overt muscle atrophy in HLI, which is normalized within weeks and accompanied by recovery of muscle mass. A complex interplay between Sestrins to regulate autophagy signaling during early-to-late muscle remodeling in HLI is likely.
Collapse
Affiliation(s)
- Mattia Scalabrin
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Viktor Engman
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Amanda Maccannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Annabel Critchlow
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nadira Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - T Scott Bowen
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
11
|
ROS-activated CXCR2 + neutrophils recruited by CXCL1 delay denervated skeletal muscle atrophy and undergo P53-mediated apoptosis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1011-1023. [PMID: 35864308 PMCID: PMC9356135 DOI: 10.1038/s12276-022-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Neutrophils are the earliest master inflammatory regulator cells recruited to target tissues after direct infection or injury. Although inflammatory factors are present in muscle that has been indirectly disturbed by peripheral nerve injury, whether neutrophils are present and play a role in the associated inflammatory process remains unclear. Here, intravital imaging analysis using spinning-disk confocal intravital microscopy was employed to dynamically identify neutrophils in denervated muscle. Slice digital scanning and 3D-view reconstruction analyses demonstrated that neutrophils escape from vessels and migrate into denervated muscle tissue. Analyses using reactive oxygen species (ROS) inhibitors and flow cytometry demonstrated that enhanced ROS activate neutrophils after denervation. Transcriptome analysis revealed that the vast majority of neutrophils in denervated muscle were of the CXCR2 subtype and were recruited by CXCL1. Most of these cells gradually disappeared within 1 week via P53-mediated apoptosis. Experiments using specific blockers confirmed that neutrophils slow the process of denervated muscle atrophy. Collectively, these results indicate that activated neutrophils are recruited via chemotaxis to muscle tissue that has been indirectly damaged by denervation, where they function in delaying atrophy. Live animal imaging experiments reveal how rapid recruitment of a subset of immune cells helps prevent muscle wasting after peripheral nerve injury. Such injuries take considerable time to heal, and there are no therapies that reliably prevent wasting of muscle lacking nervous innervation. Researchers led by JunJian Jiang and Jianguang Xu at Fudan University, Shanghai, China, have used intravital microscopy to record the cellular and molecular events that follow nerve damage in live mice. They observed heightened production of chemicals that summon immune cells known as neutrophils to the site of the injury. Even though the surrounding muscle cells were initially undamaged in this animal model, the recruited neutrophils delayed subsequent muscle wasting. This neutrophil recruitment was transient, but therapies that elicit a more sustained response could provide durable protection against muscle wasting.
Collapse
|
12
|
Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022; 11:cells11101698. [PMID: 35626735 PMCID: PMC9139227 DOI: 10.3390/cells11101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Research over almost 40 years has established that reactive oxygen species are generated at different sites in skeletal muscle and that the generation of these species is increased by various forms of exercise. Initially, this was thought to be potentially deleterious to skeletal muscle and other tissues, but more recent data have identified key roles of these species in muscle adaptations to exercise. The aim of this review is to summarise our current understanding of these redox signalling roles of reactive oxygen species in mediating responses of muscle to contractile activity, with a particular focus on the effects of ageing on these processes. In addition, we provide evidence that disruption of the redox status of muscle mitochondria resulting from age-associated denervation of muscle fibres may be an important factor leading to an attenuation of some muscle responses to contractile activity, and we speculate on potential mechanisms involved.
Collapse
|
13
|
Su Y, Claflin DR, Huang M, Davis CS, Macpherson PCD, Richardson A, Van Remmen H, Brooks SV. Deletion of Neuronal CuZnSOD Accelerates Age-Associated Muscle Mitochondria and Calcium Handling Dysfunction That Is Independent of Denervation and Precedes Sarcopenia. Int J Mol Sci 2021; 22:ijms221910735. [PMID: 34639076 PMCID: PMC8509582 DOI: 10.3390/ijms221910735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle suffers atrophy and weakness with aging. Denervation, oxidative stress, and mitochondrial dysfunction are all proposed as contributors to age-associated muscle loss, but connections between these factors have not been established. We examined contractility, mitochondrial function, and intracellular calcium transients (ICTs) in muscles of mice throughout the life span to define their sequential relationships. We performed these same measures and analyzed neuromuscular junction (NMJ) morphology in mice with postnatal deletion of neuronal Sod1 (i-mn-Sod1-/- mice), previously shown to display accelerated age-associated muscle loss and exacerbation of denervation in old age, to test relationships between neuronal redox homeostasis, NMJ degeneration and mitochondrial function. In control mice, the amount and rate of the decrease in mitochondrial NADH during contraction was greater in middle than young age although force was not reduced, suggesting decreased efficiency of NADH utilization prior to the onset of weakness. Declines in both the peak of the ICT and force were observed in old age. Muscles of i-mn-Sod1-/- mice showed degeneration of mitochondrial and calcium handling functions in middle-age and a decline in force generation to a level not different from the old control mice, with maintenance of NMJ morphology. Together, the findings support the conclusion that muscle mitochondrial function decreases during aging and in response to altered neuronal redox status prior to NMJ deterioration or loss of mass and force suggesting mitochondrial defects contribute to sarcopenia independent of denervation.
Collapse
Affiliation(s)
- Yu Su
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meixiang Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter C D Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- VA Medical Center, Oklahoma City, OK 73104, USA
| | - Holly Van Remmen
- VA Medical Center, Oklahoma City, OK 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Physiology, Health Science Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Nascimento JJAC, Machado ASD, Della-Santa GML, Fernandes DC, Ferreira MC, Machado GAP, Chaves BCG, Costa KB, Rocha-Vieira E, Oliveira MX, Gaiad TP, Santos AP. Effects of photobiomodulation therapy on functional recovery, angiogenesis and redox status in denervated muscle of rats. EINSTEIN-SAO PAULO 2021; 19:eAO6001. [PMID: 34586157 PMCID: PMC8439560 DOI: 10.31744/einstein_journal/2021ao6001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: To evaluate the effects of photobiomodulation therapy in redox status, angiogenesis marker – vascular endothelial growth factor – and in the functional recovery in denervated muscle. Methods: A total of 32 female Wistar rats underwent a crush injury and were randomly divided into four groups: Light Emitting Diode Group 2 and Control Group 2 (muscle collected 2 days after injury), and Light Emitting Diode Group 21 and Control Group 21 (muscle collected 21 days afterinjury). Light Emitting Diode Group 2 and Light Emitting Diode Group 21 received two and ten light emitting diode applications (630±20nm, 9J/cm2, 300mW), respectively, and the Control Group 2 and Control Group 21 did not receive any treatment. The function was evaluated by grasping test at four moments (pre-injury, 2, 10 and 21 post-injury days). The flexor digitorum muscle was collected for analysis of immunolocalization of vascular endothelial growth factor and redox parameters. Results: Functional improvement was observed at the second and tenth post-injury day in treated groups compared to control (p<0.005). The muscle tissue of treated groups presented higher immunohistochemical expression of vascular endothelial growth factor. Photobiomodulation therapy decreased the oxidative damage to lipid in Light Emitting Diode Group 2 compared to Control Group 2 (p=0.023) in the denervated muscle. Conclusion: Photobiomodulation therapy accelerated the functional recovery, increased angiogenesis and reduced lipid peroxidation in the denervated muscle at 2 days after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karine Beatriz Costa
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | - Thais Peixoto Gaiad
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Paula Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
15
|
Kawashima T, Ji RC, Itoh Y, Agata N, Sasai N, Murakami T, Sokabe M, Hamada F, Kawakami K. Morphological and biochemical changes of lymphatic vessels in the soleus muscle of mice after hindlimb unloading. Muscle Nerve 2021; 64:620-628. [PMID: 34409627 DOI: 10.1002/mus.27402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Lymphatic vessels are responsible for the removal of metabolic waste from body tissues. They also play a crucial role in skeletal muscle functioning thorough their high-energy metabolism. In this study we investigated whether disuse muscle atrophy induced by hindlimb unloading is associated with an alteration in the number of lymphatic vessels and differential expression of lymphangiogenic factors in the soleus muscle. METHODS Male C57BL/6 mice were subjected to tail suspension (TS) for 2 or 4 weeks to induce soleus muscle atrophy. After TS, lymphatic and blood capillaries in the soleus muscle were visualized and counted by double staining with LYVE-1 and CD31. The protein and mRNA levels of vascular endothelial growth factor (VEGF)-C, VEGF-D, and vascular endothelial growth factor receptor-3 were measured by Western blotting and real-time reverse transcript polymerase chain reaction, respectively. RESULTS TS for 2 weeks resulted in a significant decrease in the number of blood capillaries compared with controls. However, there was no significant change in the number of lymphatic capillaries. By contrast, TS for 4 weeks resulted in a significant decrease in the number of lymphatic and blood capillaries. We observed a significant decrease in the mRNA levels of VEGF-C and VEGF-D in mice subjected to TS for 4 weeks. DISCUSSION The decrease of intramuscular lymphatic vessels may a crucial role in the process of muscle atrophy.
Collapse
Affiliation(s)
- Takafumi Kawashima
- Department of Human Anatomy, Graduate School of Medicine, Oita University, Yufu, Japan
| | - Rui-Cheng Ji
- Department of Physical Therapy, Graduate School of Medicine, Oita University, Oita, Japan
| | - Yuta Itoh
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Nagoya, Japan
| | - Nobuhide Agata
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Nobuaki Sasai
- Department of Physical Therapy, Graduate School of Medical Science & Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Taro Murakami
- Faculty of Wellness, Shigakkan University, Ohbu, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Graduate School of Medicine, Oita University, Yufu, Japan
| | - Keisuke Kawakami
- Department of Physical Therapy, Graduate School of Medicine, Oita University, Oita, Japan
| |
Collapse
|
16
|
Li F, Yin C, Ma Z, Yang K, Sun L, Duan C, Wang T, Hussein A, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Shu G, Wang S, Jiang Q. PHD3 mediates denervation skeletal muscle atrophy through Nf-κB signal pathway. FASEB J 2021; 35:e21444. [PMID: 33749901 DOI: 10.1096/fj.202002049r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lijuan Sun
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Duan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Abdelaziz Hussein
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Ma W, Cai Y, Shen Y, Chen X, Zhang L, Ji Y, Chen Z, Zhu J, Yang X, Sun H. HDAC4 Knockdown Alleviates Denervation-Induced Muscle Atrophy by Inhibiting Myogenin-Dependent Atrogene Activation. Front Cell Neurosci 2021; 15:663384. [PMID: 34276308 PMCID: PMC8278478 DOI: 10.3389/fncel.2021.663384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Denervation can activate the catabolic pathway in skeletal muscle and lead to progressive skeletal muscle atrophy. At present, there is no effective treatment for muscle atrophy. Histone deacetylase 4 (HDAC4) has recently been found to be closely related to muscle atrophy, but the underlying mechanism of HDAC4 in denervation-induced muscle atrophy have not been described clearly yet. In this study, we found that the expression of HDAC4 increased significantly in denervated skeletal muscle. HDAC4 inhibition can effectively diminish denervation-induced muscle atrophy, reduce the expression of muscle specific E3 ubiquitin ligase (MuRF1 and MAFbx) and autophagy related proteins (Atg7, LC3B, PINK1 and BNIP3), inhibit the transformation of type I fibers to type II fibers, and enhance the expression of SIRT1 and PGC-1 α. Transcriptome sequencing and bioinformatics analysis was performed and suggested that HDAC4 may be involved in denervation-induced muscle atrophy by regulating the response to denervation involved in the regulation of muscle adaptation, cell division, cell cycle, apoptotic process, skeletal muscle atrophy, and cell differentiation. STRING analysis showed that HDAC4 may be involved in the process of muscle atrophy by directly regulating myogenin (MYOG), cell cycle inhibitor p21 (CDKN1A) and salt induced kinase 1 (SIK1). MYOG was significantly increased in denervated skeletal muscle, and MYOG inhibition could significantly alleviate denervation-induced muscle atrophy, accompanied by the decreased MuRF1 and MAFbx. MYOG overexpression could reduce the protective effect of HDAC4 inhibition on denervation-induced muscle atrophy, as evidenced by the decreased muscle mass and cross-sectional area of muscle fibers, and the increased mitophagy. Taken together, HDAC4 inhibition can alleviate denervation-induced muscle atrophy by reducing MYOG expression, and HDAC4 is also directly related to CDKN1A and SIK1 in skeletal muscle, which suggests that HDAC4 inhibitors may be a potential drug for the treatment of neurogenic muscle atrophy. These results not only enrich the molecular regulation mechanism of denervation-induced muscle atrophy, but also provide the experimental basis for HDAC4-MYOG axis as a new target for the prevention and treatment of muscular atrophy.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Cai
- Department of Neurology, People's Hospital of Binhai County, Yancheng, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
18
|
Nox2 Inhibition Regulates Stress Response and Mitigates Skeletal Muscle Fiber Atrophy during Simulated Microgravity. Int J Mol Sci 2021; 22:ijms22063252. [PMID: 33806917 PMCID: PMC8005132 DOI: 10.3390/ijms22063252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023] Open
Abstract
Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.
Collapse
|
19
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
20
|
Dai J, Xiang Y, Fu D, Xu L, Jiang J, Xu J. Ficus carica L. Attenuates Denervated Skeletal Muscle Atrophy via PPARα/NF-κB Pathway. Front Physiol 2020; 11:580223. [PMID: 33343385 PMCID: PMC7744683 DOI: 10.3389/fphys.2020.580223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment options for denervated skeletal muscle atrophy are limited, in part because the underlying molecular mechanisms are not well understood. Unlike previous transcriptomics studies conducted in rodent models of peripheral nerve injury, in the present study, we performed high-throughput sequencing with denervated atrophic biceps muscle and normal (non-denervated) sternocleidomastoid muscle samples obtained from four brachial plexus injury (BPI) patients. We also investigated whether Ficus carica L. (FCL.) extract can suppress denervated muscle atrophy in a mouse model, along with the mechanism of action. We identified 1471 genes that were differentially expressed between clinical specimens of atrophic and normal muscle, including 771 that were downregulated and 700 that were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed genes were mainly enriched in the GO terms “structural constituent of muscle,” “Z disc,” “M band,” and “striated muscle contraction,” as well as “Cell adhesion molecules,” “Glycolysis/Gluconeogenesis,” “Peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway,” and “P53 signaling pathway.” In experiments using mice, the reduction in wet weight and myofiber diameter in denervated muscle was improved by FCL. extract compared to saline administration, which was accompanied by downregulation of the proinflammatory cytokines interleukin (IL)-1β and IL-6. Moreover, although both denervated groups showed increased nuclear factor (NF)-κB activation and PPARα expression, the degree of NF-κB activation was lower while PPARα and inhibitor of NF-κB IκBα expression was higher in FCL. extract-treated mice. Thus, FCL. extract suppresses denervation-induced inflammation and attenuates muscle atrophy by enhancing PPARα expression and inhibiting NF-κB activation. These findings suggest that FCL. extract has therapeutic potential for preventing denervation-induced muscle atrophy caused by peripheral nerve injury or disease.
Collapse
Affiliation(s)
- Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Da Fu
- Central Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Jackson MJ. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis. Free Radic Biol Med 2020; 161:326-338. [PMID: 33099002 PMCID: PMC7754707 DOI: 10.1016/j.freeradbiomed.2020.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Responding appropriately to exercise is essential to maintenance of skeletal muscle mass and function at all ages and particularly during aging. Here, a hypothesis is presented that a key component of the inability of skeletal muscle to respond effectively to exercise in aging is a denervation-induced failure of muscle redox signalling. This novel hypothesis proposes that an initial increase in oxidation in muscle mitochondria leads to a paradoxical increase in the reductive state of specific cysteines of signalling proteins in the muscle cytosol that suppresses their ability to respond to normal oxidising redox signals during exercise. The following are presented for consideration:Transient loss of integrity of peripheral motor neurons occurs repeatedly throughout life and is normally rapidly repaired by reinnervation, but this repair process becomes less efficient with aging. Each transient loss of neuromuscular integrity leads to a rapid, large increase in mitochondrial peroxide production in the denervated muscle fibers and in neighbouring muscle fibers. This peroxide may initially act to stimulate axonal sprouting and regeneration, but also stimulates retrograde mitonuclear communication to increase expression of a range of cytoprotective proteins in an attempt to protect the fiber and neighbouring tissues against oxidative damage. The increased peroxide within mitochondria does not lead to an increased cytosolic peroxide, but the increases in adaptive cytoprotective proteins include some located to the muscle cytosol which modify the local cytosol redox environment to induce a more reductive state in key cysteines of specific signalling proteins. Key adaptations of skeletal muscle to exercise involve transient peroxiredoxin oxidation as effectors of redox signalling in the cytosol. This requires sensitive oxidation of key cysteine residues. In aging, the chronic change to a more reductive cytosolic environment prevents the transient oxidation of peroxiredoxin 2 and hence prevents essential adaptations to exercise, thus contributing to loss of muscle mass and function. Experimental approaches suitable for testing the hypothesis are also outlined.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
22
|
Wang H, Wang H, Li X, Xu W. Characteristics of Early Internal Laryngeal Muscle Atrophy After Recurrent Laryngeal Nerve Injuries in Rats. Laryngoscope 2020; 131:E1256-E1264. [PMID: 33098577 DOI: 10.1002/lary.29210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS The present study investigated the characteristics of early internal laryngeal muscle atrophy in recurrent laryngeal nerve injury (RLNI) rats. STUDY DESIGN To observe the characteristics of early internal laryngeal muscle atrophy post RLNI. METHODS Rats were divided into three groups: sham-operated control group (n = 20), recurrent laryngeal nerve transverse injury group (RLNTI, n = 50), and recurrent laryngeal nerve blunt contusion group (RLNBC, n = 50). Five weeks after RLNI, certain rats were sacrificed weekly, and their laryngeal tissues were harvested. The atrophic features of internal laryngeal muscles were detected using hematoxylin and eosin. NF-κB and MuRF-1 levels were tested using IHC. RESULTS The atrophic degree and fibrosis of thyroarytenoid, posterior cricoarytenoid, and lateral cricoarytenoid muscles were related to the type of RLNI. The average myofiber cross-sectional areas increased before an obvious decrease in the RLNTI and RLNBC groups. Muscle recovery occurred in the RLNBC group starting 4 weeks after RLNI, but only a weak trend was observed in the RLNTI group in the 5th week. During the muscle atrophy process, MuRF-1 and NF-κB were upregulated early and were maintained at a high level, which showed a trend similar to muscle atrophy. However, NF-κB expression was opposite to MuRF-1 expression and muscle atrophy when the muscles recovered. CONCLUSION The atrophy degree of internal laryngeal muscles was associated with the type of RLNI. The NF-κB/MuRF-1 signaling pathway was involved in internal laryngeal muscle atrophy after RLNI, which is different from skeletal muscle after denervation. LEVEL OF EVIDENCE NA Laryngoscope, 131:E1256-E1264, 2021.
Collapse
Affiliation(s)
- Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xueyan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Bhaskaran S, Pollock N, C. Macpherson P, Ahn B, Piekarz KM, Staunton CA, Brown JL, Qaisar R, Vasilaki A, Richardson A, McArdle A, Jackson MJ, Brooks SV, Van Remmen H. Neuron-specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging Cell 2020; 19:e13225. [PMID: 32886862 PMCID: PMC7576239 DOI: 10.1111/acel.13225] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 01/21/2023] Open
Abstract
Age-associated loss of muscle mass and function (sarcopenia) has a profound effect on the quality of life in the elderly. Our previous studies show that CuZnSOD deletion in mice (Sod1-/- mice) recapitulates sarcopenia phenotypes, including elevated oxidative stress and accelerated muscle atrophy, weakness, and disruption of neuromuscular junctions (NMJs). To determine whether deletion of Sod1 initiated in neurons in adult mice is sufficient to induce muscle atrophy, we treated young (2- to 4-month-old) Sod1flox/SlickHCre mice with tamoxifen to generate i-mn-Sod1KO mice. CuZnSOD protein was 40-50% lower in neuronal tissue in i-mn-Sod1KO mice. Motor neuron number in ventral spinal cord was reduced 28% at 10 months and more than 50% in 18- to 22-month-old i-mn-Sod1KO mice. By 24 months, 22% of NMJs in i-mn-Sod1KO mice displayed a complete lack of innervation and deficits in specific force that are partially reversed by direct muscle stimulation, supporting the loss of NMJ structure and function. Muscle mass was significantly reduced by 16 months of age and further decreased at 24 months of age. Overall, our findings show that neuronal-specific deletion of CuZnSOD is sufficient to cause motor neuron loss in young mice, but that NMJ disruption, muscle atrophy, and weakness are not evident until past middle age. These results suggest that loss of innervation is critical but may not be sufficient until the muscle reaches a threshold beyond which it cannot compensate for neuronal loss or rescue additional fibers past the maximum size of the motor unit.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Natalie Pollock
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Peter C. Macpherson
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Bumsoo Ahn
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Katarzyna M. Piekarz
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma Center For NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Caroline A. Staunton
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Jacob L. Brown
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Rizwan Qaisar
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Aphrodite Vasilaki
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Arlan Richardson
- Oklahoma City VA Medical CenterOklahoma CityOKUSA
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Anne McArdle
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Malcolm J. Jackson
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Susan V. Brooks
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Holly Van Remmen
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma City VA Medical CenterOklahoma CityOKUSA
| |
Collapse
|
24
|
Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology 2020; 21:475-484. [PMID: 32447556 PMCID: PMC7347670 DOI: 10.1007/s10522-020-09883-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The loss of muscle mass and function with age, termed sarcopenia, is an inevitable process, which has a significant impact on quality of life. During ageing we observe a progressive loss of total muscle fibres and a reduction in cross-sectional area of the remaining fibres, resulting in a significant reduction in force output. The mechanisms which underpin sarcopenia are complex and poorly understood, ranging from inflammation, dysregulation of protein metabolism and denervation. However, there is significant evidence to demonstrate that modified ROS generation, redox dis-homeostasis and mitochondrial dysfunction may have an important role to play. Based on this, significant interest and research has interrogated potential ROS-targeted therapies, ranging from nutritional-based interventions such as vitamin E/C, polyphenols (resveratrol) and targeted pharmacological compounds, using molecules such as SS-31 and MitoQ. In this review we evaluate these approaches to target aberrant age-related ROS generation and the impact on muscle mass and function.
Collapse
|
25
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|