1
|
Li-Yang M, Ma C, Wang X, You J. OSBPL2 inhibition leads to apoptosis of cochlea hair cells in age-related hearing loss by inhibiting the AKT/FOXG1 signaling pathway. Aging (Albany NY) 2024; 16:13132-13144. [PMID: 39475791 PMCID: PMC11552636 DOI: 10.18632/aging.206138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/19/2024] [Indexed: 11/07/2024]
Abstract
Age-related hearing loss (AHL) is a prevalent and multifaceted condition that significantly impacts a substantial portion of the aging population. Oxysterol Binding Protein-like 2 (OSBPL2) has been identified as a causal gene for hearing loss. However, its role in AHL is still unclear. In this study, we investigated the effect of OSBPL2 on the survival of cochlea hair cells. To simulate AHL in vitro, hair cell-like inner ear cells (HEI-OC1) were exposed to H2O2 treatment. OSBPL2 expression was significantly increased in HEI-OC1 cells after H2O2 treatment. OSBPL2 knockdown augmented cell death and apoptosis in H2O2-induced HEI-OC1 cells. Besides, H2O2 treatment also led to the inactivation of the AKT and FOXG1 signaling pathways in HEI-OC1 cells. Mechanistically, OSBPL2 silencing reinforced the inactivation of the FOXG1 signaling pathway in H2O2-treated HEI-OC1 cells by inhibiting the AKT signaling pathway. Under H2O2 treatment, AKT inhibition by MK2206 augmented the apoptosis of HEI-OC1 cells; on the contrary, AKT activation by SC79 treatment partially rescued the apoptosis of OSBPL2-knockdown HEI-OC1 cells. In addition, FOXG1 silencing significantly reversed the effects of AKT activation on OSBPL2-knockdown HEI-OC1 cells. Moreover, OSBPL2 expression and the activation status of the AKT/FOXG1 signaling pathway were confirmed in the cochleae of young and old C57BL/6 mice. In conclusion, our study provides evidence that OSBPL2 inhibition sensitizes HEI-OC1 cells to H2O2-induced apoptosis via inactivation of the AKT/FOXG1 signaling pathway, suggesting that OSBPL2 acts as an important regulator in AHL.
Collapse
Affiliation(s)
- Meina Li-Yang
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Chao Ma
- Department of Cardiothoracic Surgery, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Xiaoye Wang
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Jianqiang You
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| |
Collapse
|
2
|
Bell JM, Turner EM, Biesemeyer C, Vanderbeck MM, Hendricks R, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biol Open 2024; 13:bio060580. [PMID: 39301848 PMCID: PMC11423914 DOI: 10.1242/bio.060580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammals, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. Our study demonstrates that mutation of foxg1a results in slower posterior lateral line primordium migration and delayed neuromast formation. In developing and regenerating neuromasts, we find that loss of Foxg1a function results in reduced hair cell numbers, as well as decreased proliferation of neuromast cells. Foxg1a specifically regulates the development and regeneration of Islet1-labeled hair cells. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration.
Collapse
Affiliation(s)
- Jon M. Bell
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Emily M. Turner
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Cole Biesemeyer
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
- Research Organisms, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madison M. Vanderbeck
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Roe Hendricks
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| |
Collapse
|
3
|
Rachid Zaim S, Pebworth MP, McGrath I, Okada L, Weiss M, Reading J, Czartoski JL, Torgerson TR, McElrath MJ, Bumol TF, Skene PJ, Li XJ. MOCHA's advanced statistical modeling of scATAC-seq data enables functional genomic inference in large human cohorts. Nat Commun 2024; 15:6828. [PMID: 39122670 PMCID: PMC11316085 DOI: 10.1038/s41467-024-50612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is being increasingly used to study gene regulation. However, major analytical gaps limit its utility in studying gene regulatory programs in complex diseases. In response, MOCHA (Model-based single cell Open CHromatin Analysis) presents major advances over existing analysis tools, including: 1) improving identification of sample-specific open chromatin, 2) statistical modeling of technical drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4) identification of alternative transcription-starting-site regulation, and 5) modules for inferring temporal gene regulatory networks from longitudinal data. These advances, in addition to open chromatin analyses, provide a robust framework after quality control and cell labeling to study gene regulatory programs in human disease. We benchmark MOCHA with four state-of-the-art tools to demonstrate its advances. We also construct cross-sectional and longitudinal gene regulatory networks, identifying potential mechanisms of COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional genomic inference from scATAC-seq data.
Collapse
Affiliation(s)
| | | | | | - Lauren Okada
- Allen Institute for Immunology, Seattle, WA, USA
| | - Morgan Weiss
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - Julie L Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
4
|
Liu YC, Bai X, Liao B, Chen XB, Li LH, Liu YH, Hu HJ, Xu K. Activating transcription factor 6 contributes to cisplatin‑induced ototoxicity via regulating the unfolded proteins response. Biomed Pharmacother 2024; 177:117025. [PMID: 38941893 DOI: 10.1016/j.biopha.2024.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
As a broad-spectrum anticancer drug, cisplatin is widely used in the treatment of tumors in various systems. Unfortunately, several serious side effects of cisplatin limit its clinical application, the most common of which are nephrotoxicity and ototoxicity. Studies have shown that cochlear hair cell degeneration is the main cause of cisplatin-induced hearing loss. However, the mechanism of cisplatin-induced hair cell death remains unclear. The present study aimed to explore the potential role of activating transcription factor 6 (ATF6), an endoplasmic reticulum (ER)-localized protein, on cisplatin-induced ototoxicity in vivo and in vitro. In this study, we observed that cisplatin exposure induced apoptosis of mouse auditory OC-1 cells, accompanied by a significant increase in the expression of ATF6 and C/EBP homologous protein (CHOP). In cell or cochlear culture models, treatment with an ATF6 agonist, an ER homeostasis regulator, significantly ameliorated cisplatin-induced cytotoxicity. Further, our in vivo experiments showed that subcutaneous injection of an ATF6 agonist almost completely prevented outer hair cell loss and significantly alleviated cisplatin-induced auditory brainstem response (ABR) threshold elevation in mice. Collectively, our results revealed the underlying mechanism by which activation of ATF6 significantly improved cisplatin-induced hair cell apoptosis, at least in part by inhibiting apoptosis signal-regulating kinase 1 expression, and demonstrated that pharmacological activation of ATF6-mediated unfolded protein response is a potential treatment for cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xue Bai
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Liao
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xu-Bo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li-Hua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue-Hui Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hai-Jun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Qiu K, Mao M, Pang W, Deng D, Ren J, Zhao Y. The emerging roles and therapeutic implications of immunosenescence-mediated inflammaging in age-related hearing loss. AMERICAN JOURNAL OF STEM CELLS 2024; 13:101-109. [PMID: 38765806 PMCID: PMC11101989 DOI: 10.62347/dtap3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Age-related hearing loss (ARHL) represents one of the most prevalent chronic sensory deficits experienced by the elderly, significantly diminishing their quality of life and correlating with various medical and psychological morbidities. This condition arises from the cumulative effects of aging on the auditory system, implicating intricate interactions between genetic predispositions and environmental factors. Aging entails a progressive decline in immune system functionality, termed immunosenescence, leading to a chronic low-grade inflammation known as inflammaging. This phenomenon potentially serves as a common mechanism underlying ARHL and other age-related pathologies. Recent research suggests that rejuvenating immunosenescence could mitigate inflammaging and ameliorate age-related functional declines, offering promising insights into anti-aging therapies. Consequently, this review endeavors to elucidate the role of immunosenescence-mediated inflammaging in ARHL progression and discuss its therapeutic implications.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Wendu Pang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Di Deng
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| |
Collapse
|
6
|
Bell JM, Biesemeyer C, Turner EM, Vanderbeck MM, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589268. [PMID: 38659824 PMCID: PMC11042177 DOI: 10.1101/2024.04.12.589268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammalian models, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. We find that loss of Foxg1a function results in reduced hair cell development and regeneration, as well as decreased cellular proliferation in the lateral line system. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration. Summary statement Our work demonstrates a role for Foxg1a in developing and regenerating new sensory cells through proliferation.
Collapse
|
7
|
Zhang A, Pan Y, Wang H, Ding R, Zou T, Guo D, Shen Y, Ji P, Huang W, Wen Q, Wang Q, Hu H, Wu J, Xiang M, Ye B. Excessive processing and acetylation of OPA1 aggravate age-related hearing loss via the dysregulation of mitochondrial dynamics. Aging Cell 2024; 23:e14091. [PMID: 38267829 PMCID: PMC11019136 DOI: 10.1111/acel.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of age-related hearing loss (ARHL) remains unclear. OPA1 is the sole fusion protein currently known to be situated in the inner mitochondrial membrane, which is pivotal for maintaining normal mitochondrial function. While it has already been demonstrated that mutations in OPA1 may lead to hereditary deafness, its involvement in the occurrence and development of ARHL has not been previously explored. In our study, we constructed D-gal-induced senescent HEI-OC1 cells and the cochlea of C57BL/6J mice with a mutated SUMOylation site of SIRT3 using CRISPR/Cas9 technology. We found enhanced L-OPA1 processing mediated by activated OMA1, and increased OPA1 acetylation resulting from reductions in SIRT3 levels in senescent HEI-OC1 cells. Consequently, the fusion function of OPA1 was inhibited, leading to mitochondrial fission and pyroptosis in hair cells, ultimately exacerbating the aging process of hair cells. Our results suggest that the dysregulation of mitochondrial dynamics in cochlear hair cells in aged mice can be ameliorated by activating the SIRT3/OPA1 signaling. This has the potential to alleviate the senescence of cochlear hair cells and reduce hearing loss in mice. Our study highlights the significant roles played by the quantities of long and short chains and the acetylation activity of OPA1 in the occurrence and development of ARHL. This finding offers new perspectives and potential targets for the prevention and treatment of ARHL.
Collapse
Affiliation(s)
- Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Audiology & Speech‐Language Pathology, College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Audiology & Speech‐Language Pathology, College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Zou T, Xie R, Huang S, Lu D, Liu J. Potential role of modulating autophagy levels in sensorineural hearing loss. Biochem Pharmacol 2024; 222:116115. [PMID: 38460910 DOI: 10.1016/j.bcp.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.
Collapse
Affiliation(s)
- Ting Zou
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dingkun Lu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Zhang Y, Ye F, Fu X, Li S, Wang L, Chen Y, Li H, Hao S, Zhao K, Feng Q, Li P. Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neurosci Bull 2024; 40:255-267. [PMID: 37391607 PMCID: PMC10838870 DOI: 10.1007/s12264-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 07/02/2023] Open
Abstract
Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250000, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaojuan Hao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Zhao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| | - Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Tang X, Zhong H, Xu C, Sun Y, Lou Y, Zhao Y, Liang Y, Guo X, Pan C, Sun J, Sun J. Downregulation of KCNMA1 in mice accelerates auditory hair cells senescence via ferroptosis. Neurobiol Aging 2024; 134:115-125. [PMID: 38056217 DOI: 10.1016/j.neurobiolaging.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
KCNMA1 encodes the K+ potassium channel α-subunit that plays a significant role in the auditory system. Our previous studies indicated that KCNMA1 is associated with age-related hearing loss(AHL). However, the detailed mechanism of KCNMA1 involvement in auditory age-related degradation has not been fully clarified. Therefore, we explored the expression of KCNMA1 in the peripheral auditory of 2-month-old and 12-month-old mice by Western blotting and immunofluorescence. The results of animal experiments showed that KCNMA1 expression was decreased in 12-month-old mice compared with 2-month-old mice, whereas the ferroptosis level was increased. To verify the role of KCNMA1 in AHL, we downregulated KCNMA1 in HEI-OC1 cells by transfecting shRNA. After downregulation, the ferroptosis level was increased and the aging process was accelerated. Furthermore, the aging process was affected by the expression of ferroptosis. In conclusion, these results revealed that KCNMA1 is associated with the aging process in auditory hair cells by regulating ferroptosis, which deepens our understanding of age-related hearing loss.
Collapse
Affiliation(s)
- Xiaomin Tang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Haoyue Zhong
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chenyu Xu
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxuan Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxiang Lou
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yi Zhao
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yue Liang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Xiaotao Guo
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chunchen Pan
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Jiaqiang Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| | - Jingwu Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
11
|
Zhu H, Xiao F, Xiao Y, Guo Y, Shan X, Zhang Z, Zhang L, Guo H. Targeting CB2R in astrocytes for Parkinson's disease therapy: unraveling the Foxg1-mediated neuroprotective mechanism through autophagy-mediated NLRP3 degradation. J Neuroinflammation 2023; 20:304. [PMID: 38110963 PMCID: PMC10729372 DOI: 10.1186/s12974-023-02989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Inflammasomes in astrocytes have been shown to play a crucial role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Cannabinoid Receptor 2(CB2R), a G protein-coupled receptor (GPCR), is considered a promising therapeutic target in inflammation-related disorders. This study aims to explore the role of CB2R in regulating NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated neuroinflammation in astrocytes. METHODS In an in vivo animal model, specific targeting of astrocytic CB2R was achieved by injecting CB2R-specific adenovirus (or fork head box g1(foxg1) adenovirus) to knock down CB2R or administering CB2R agonists, inhibitors, etc., in the substantia nigra pars compacta (SNc) of mice. A PD mouse model was established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induction. Animal behavioral tests, western blot, immunofluorescence, and other experiments were performed to assess the loss of midbrain tyrosine hydroxylase (TH) neurons, activation of astrocytes, and activation of the NLRP3 pathway. Primary astrocytes were cultured in vitro, and NLRP3 inflammasomes were activated using 1-methyl-4-phenylpyridinium (MPP+) or lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Western blot and ELISA experiments were conducted to assess the release of inflammatory factors. Transcriptomic sequencing and CUT&RUN techniques were employed to study the CB2R regulation of the foxg1 binding site on the autophagy molecule microtubule-associated protein 1 light chain 3 beta (MAP1LC3B). RESULTS Astrocytic CB2R knockdown impaired the motor abilities of MPTP-induced mice, exacerbated the loss of TH neurons, and induced activation of the NLRP3/Caspase-1/interleukin 1 (IL-1β) pathway. Activation of CB2R significantly alleviated motor impairments in mice while reducing NLRP3 deposition on astrocytes. In vitro cell experiments showed that CB2R activation attenuated the activation of the NLRP3/Caspase-1/IL-1β pathway induced by LPS + ATP or MPP+. Additionally, it inhibited the binding of foxg1 to MAP1LC3B, increased astrocytic autophagy levels, and facilitated NLRP3 degradation through the autophagy-lysosome pathway. CONCLUSION Activation of CB2R on astrocytes effectively mitigates NLRP3-mediated neuroinflammation and ameliorates the disease characteristics of PD in mice. CB2R represents a potential therapeutic target for treating PD.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China.
- Institute of Neuroscience, Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
13
|
Ren Z, Yang H, Zhu C, Deng J, Fan D. Ginsenoside Rh4 Alleviates Amyloid β Plaque and Tau Hyperphosphorylation by Regulating Neuroinflammation and the Glycogen Synthase Kinase 3β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13783-13794. [PMID: 37676640 DOI: 10.1021/acs.jafc.3c02550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a primary neurodegenerative disease. It can be caused by aging and brain trauma and severely affects the abilities of cognition and memory of patients. Therefore, it seriously threatens the mental and physical health of humans worldwide. As a traditional Chinese medicine, ginsenosides have been proven to have a variety of pharmacological activities. Ginsenoside Rh4 (Rh4) is one of the rare ginsenosides with higher pharmacological activity than ordinary ginsenosides, but its effect on alleviating AD and its molecular mechanism have not been studied. Here, we investigated the anti-AD effects of Rh4 and its potential mechanisms using an AD mouse model induced by a combination of AlCl3·6H2O and d-galactose. The results showed that Rh4 could significantly improve the ability of cognizance and reduce neuronal damage in mice. Concurrently, Rh4 attenuates amyloid β accumulation, increases the density of dendritic spines, and logically inhibits synaptic structural damage as a result of neuronal excessive apoptosis and autophagy. Rh4 can not only inhibit the inflammatory response caused by the overactivation of microglia and astrocytes, reduce the levels of pro-inflammatory factors, increase the level of antioxidant enzymes in serum, and significantly improve the activity of antioxidant enzyme SOD1 in the hippocampus but also inhibit the hyperphosphorylation of tau protein in the hippocampus of mice by regulating the Wnt2b/GSK-3β/SMAD4 signaling pathway. Together, this study provides a theoretical basis for Rh4 in the treatment of AD and reveals that Rh4 is a potential drug for the treatment of AD.
Collapse
Affiliation(s)
- Zhuo Ren
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
14
|
Xu K, Chang X, Bai X, Liu HB, Chen XB, Chen HP, Liu YH. Activation of Nrf2 inhibits ferroptosis and protects against oxaliplatin-induced ototoxicity. Biomed Pharmacother 2023; 165:115248. [PMID: 37523980 DOI: 10.1016/j.biopha.2023.115248] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Oxaliplatin, as a third-generation platinum-based anticancer drug, is widely used in tumor therapy of many systems. Clinically, oxaliplatin has a number of serious side effects, most notably neuropathy and ototoxicity. The degeneration of cochlear hair cells is the main reason for the hearing loss caused by platinum-based drugs. However, the mechanism of oxaliplatin-induced cochlear hair cell death remains unclear. Ferroptosis is a novel cell injury pattern triggered by the accumulation of iron hydroperoxides in lipids and dependent on the participation of iron ions, which plays an important role in a variety of diseases. Whether ferroptosis is involved in oxaliplatin-induced ototoxicity has not been reported. In this study, we observed that oxaliplatin treatment resulted in lipid peroxidation and reactive oxygen species (ROS) accumulation in OC1 cells, which may be an early alteration in the occurrence of ferroptosis. Additional treatment with ferroptosis inducer or inhibitor significantly aggravated or ameliorated oxaliplatin-induced cytotoxicity. Similarly, inhibition of ferroptosis also protected cochlear hair cells against oxaliplatin-induced injury. In addition, the expression of nuclear factor erythroid 2-related factor2 (Nrf2) and heme oxygenase-1 (HO-1) was significantly increased after oxaliplatin treatment, and treatment with the Nrf2 agonist, resveratrol, dramatically attenuated cochlear hair cell damage induced by oxaliplatin. Activation of Nrf2 significantly decreased the expression of iron regulatory protein 2 (IRP-2) and reversed the expression of glutathione peroxidase 4 (GPX4). Collectively, our results demonstrated that activation of Nrf2 alleviates oxaliplatin-induced cochlear hair cell damage by inhibiting ferroptosis, which may be a new mechanism of oxaliplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue Bai
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hong-Bing Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xu-Bo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hong-Ping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yue-Hui Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
15
|
Hong G, Fu X, Qi J, Shao B, Han X, Fang Y, Liu S, Cheng C, Zhu C, Gao J, Gao X, Chen J, Xia M, Xiong W, Chai R. Dock4 is required for the maintenance of cochlear hair cells and hearing function. FUNDAMENTAL RESEARCH 2023; 3:557-569. [PMID: 38933554 PMCID: PMC11197514 DOI: 10.1016/j.fmre.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/β-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/β-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Buwei Shao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xuan Han
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, Jiangsu 210004, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250000, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong 250022, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
16
|
Cui F, Cao Z, Zhang Q, Cao Z. The protective role of Wnt3a in peroxynitrite-induced damage of cochlear hair cells in vitro. Braz J Otorhinolaryngol 2023; 89:101278. [PMID: 37331234 PMCID: PMC10300296 DOI: 10.1016/j.bjorl.2023.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
OBJECTIVE To investigate the effect of peroxynitrite on the cultured cochlear hair cells of C57BL/6 P3 mice in vitro as well as the role of Wnt3a, as an activator of the canonical Wnt signaling pathway, underlying the action of such an oxidative stress. METHODS The in vitro primary cultured cochlear hair cells were subjected to l00 μM peroxynitrite and l00 μM peroxynitrite +25 ng/mL Wnt3a for 24 h, the cell survival and morphological changes were examined by immunofluorescence and transmission electron microscopy. RESULTS The number of surviving hair cells was significantly reduced in the 100 μM peroxynitrite group, while it was significantly higher in the Wnt3a + peroxynitrite treated group compared with the peroxynitrite treated group. The transmission electron microscopy showed that exposure to peroxynitrite induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, while Wnt3a clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. CONCLUSION These results indicated that peroxynitrite could cause oxidative damage to the cochlear hair cells, and low concentrations of Wnt3a has a protective effect against oxidative damage. LEVEL OF EVIDENCE Level 2.
Collapse
Affiliation(s)
- Fengyun Cui
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Pathology, Shandong Province, China
| | - Zhimin Cao
- Gao Tang People's Hospital Affiliated to Jining Medical University, Emergency Department, Shandong Province, China
| | - Qianru Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Pathology, Shandong Province, China
| | - Zhixin Cao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Pathology, Shandong Province, China.
| |
Collapse
|
17
|
Liu M, Zhang H, Wang Z, Mo T, Lai X, He Y, Jiang M, He M, Kong W, Wu T, Zhang X. Independent and Combined Associations of Sleep Duration, Bedtime, and Polygenic Risk Score with the Risk of Hearing Loss among Middle-Aged and Old Chinese: The Dongfeng-Tongji Cohort Study. RESEARCH (WASHINGTON, D.C.) 2023; 6:0178. [PMID: 37383219 PMCID: PMC10298215 DOI: 10.34133/research.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Evidence available on the independent and combined associations of sleep duration, bedtime, and genetic predisposition with hearing loss was lacking. The present study included 15,827 participants from the Dongfeng-Tongji cohort study. Genetic risk was characterized by polygenic risk score (PRS) based on 37 genetic loci related to hearing loss. We conducted multivariate logistic regression models to assess the odds ratio (OR) for hearing loss with sleep duration and bedtime, as well as the joint association and interaction with PRS. Results showed that hearing loss was independently associated with sleeping ≥9 h/night compared to the recommended 7 to <8 h/night, and with bedtime ≤9:00 p.m. and >9:00 p.m. to 10:00 p.m. compared to those with bedtime >10:00 p.m. to 11:00 p.m., with estimated ORs of 1.25, 1.27, and 1.16, respectively. Meanwhile, the risk of hearing loss increased by 29% for each 5-risk allele increment of PRS. More importantly, joint analyses showed that the risk of hearing loss was 2-fold in sleep duration ≥9 h/night and high PRS, and 2.18-fold in bedtime ≤9:00 p.m. and high PRS. With significant joint effects of sleep duration and bedtime on hearing loss, we found an interaction of sleep duration with PRS in those with early bedtime and an interaction of bedtime with PRS in those with long sleep duration on hearing loss (Pint <0.05), and such relationships were more evident in high PRS. Similarly, the above relationships were also observed for age-related hearing loss and noise-induced hearing loss, particularly the latter. In addition, age-modified effects of sleep patterns on hearing loss were likewise observed, with stronger estimation among those aged <65 years. Accordingly, longer sleep duration, early bedtime, and high PRS were independently and jointly related to increased risk of hearing loss, suggesting the importance of considering both genetics and sleep pattern for risk assessment of hearing loss.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiqing Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhichao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Mo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaling He
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minghui Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Wang Y, Jin Y, Zhang Q, Xiong Y, Gu X, Zeng S, Chen W. Research progress in delineating the pathological mechanisms of GJB2-related hearing loss. Front Cell Neurosci 2023; 17:1208406. [PMID: 37333892 PMCID: PMC10272732 DOI: 10.3389/fncel.2023.1208406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Hearing loss is the most common congenital sensory impairment. Mutations or deficiencies of the GJB2 gene are the most common genetic cause of congenital non-syndromic deafness. Pathological changes such as decreased potential in the cochlea, active cochlear amplification disorders, cochlear developmental disorders and macrophage activation have been observed in various GJB2 transgenic mouse models. In the past, researchers generally believed that the pathological mechanisms underlying GJB2-related hearing loss comprised a K+ circulation defect and abnormal ATP-Ca2+ signals. However, recent studies have shown that K+ circulation is rarely associated with the pathological process of GJB2-related hearing loss, while cochlear developmental disorders and oxidative stress play an important, even critical, role in the occurrence of GJB2-related hearing loss. Nevertheless, these research has not been systematically summarized. In this review, we summarize the pathological mechanisms of GJB2-related hearing loss, including aspects of K+ circulation, developmental disorders of the organ of Corti, nutrition delivery, oxidative stress and ATP-Ca2+ signals. Clarifying the pathological mechanism of GJB2-related hearing loss can help develop new prevention and treatment strategies.
Collapse
Affiliation(s)
- Yujun Wang
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Gu
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Zeng
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Otorhinolaryngology–Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Li Y, Zhang T, Song Q, Gao D, Li Y, Jie H, Huang P, Zheng G, Yang J, He J. Cisplatin ototoxicity mechanism and antagonistic intervention strategy: a scope review. Front Cell Neurosci 2023; 17:1197051. [PMID: 37323582 PMCID: PMC10267334 DOI: 10.3389/fncel.2023.1197051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cisplatin is a first-line chemotherapeutic agent in the treatment of malignant tumors with remarkable clinical effects and low cost. However, the ototoxicity and neurotoxicity of cisplatin greatly limit its clinical application. This article reviews the possible pathways and molecular mechanisms of cisplatin trafficking from peripheral blood into the inner ear, the toxic response of cisplatin to inner ear cells, as well as the cascade reactions leading to cell death. Moreover, this article highlights the latest research progress in cisplatin resistance mechanism and cisplatin ototoxicity. Two effective protective mechanisms, anti-apoptosis and mitophagy activation, and their interaction in the inner ear are discussed. Additionally, the current clinical preventive measures and novel therapeutic agents for cisplatin ototoxicity are described. Finally, this article also forecasts the prospect of possible drug targets for mitigating cisplatin-induced ototoxicity. These include the use of antioxidants, inhibitors of transporter proteins, inhibitors of cellular pathways, combination drug delivery methods, and other mechanisms that have shown promise in preclinical studies. Further research is needed to evaluate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Yingru Li
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyang Zhang
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qiang Song
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Ping Huang
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guiliang Zheng
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingchun He
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
20
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
22
|
Mu YR, Zou SY, Li M, Ding YY, Huang X, He ZH, Kong WJ. Role and mechanism of FOXG1-related epigenetic modifications in cisplatin-induced hair cell damage. Front Mol Neurosci 2023; 16:1064579. [PMID: 37181652 PMCID: PMC10169754 DOI: 10.3389/fnmol.2023.1064579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Cisplatin is widely used in clinical tumor chemotherapy but has severe ototoxic side effects, including tinnitus and hearing damage. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. In this study, we used CBA/CaJ mice to establish an ototoxicity model of cisplatin-induced hair cell loss, and our results showed that cisplatin treatment could reduce FOXG1 expression and autophagy levels. Additionally, H3K9me2 levels increased in cochlear hair cells after cisplatin administration. Reduced FOXG1 expression caused decreased microRNA (miRNA) expression and autophagy levels, leading to reactive oxygen species (ROS) accumulation and cochlear hair cell death. Inhibiting miRNA expression decreased the autophagy levels of OC-1 cells and significantly increased cellular ROS levels and the apoptosis ratio in vitro. In vitro, overexpression of FOXG1 and its target miRNAs could rescue the cisplatin-induced decrease in autophagy, thereby reducing apoptosis. BIX01294 is an inhibitor of G9a, the enzyme in charge of H3K9me2, and can reduce hair cell damage and rescue the hearing loss caused by cisplatin in vivo. This study demonstrates that FOXG1-related epigenetics plays a role in cisplatin-induced ototoxicity through the autophagy pathway, providing new ideas and intervention targets for treating ototoxicity.
Collapse
Affiliation(s)
- Yu-rong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-yu Zou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-yan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-hong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Yang X, Wu Y, Zhang M, Zhang L, Zhao T, Qian W, Zhu M, Wang X, Zhang Q, Sun J, Dong L. Piceatannol protects against age-related hearing loss by inhibiting cellular pyroptosis and inflammation through regulated Caspase11-GSDMD pathway. Biomed Pharmacother 2023; 163:114704. [PMID: 37100013 DOI: 10.1016/j.biopha.2023.114704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Age-related hearing loss (ARHL) is a common issue associated with aging. One of the typical causes of hearing loss is the damage to inner ear hair cells. In addition, oxidative stress and inflammation contribute to ARHL. To avoid excessive inflammatory responses, non-classical scorch death pathway by cell membrane lipopolysaccharide (LPS) activates of caspase-11. Piceatannol (PCT) is also known for anti-tumor, antioxidant and anti-inflammatory effects; however, the protective effect of piceatannol (PCT) on ARHL is unclear. The aim of this study was to elucidate the mechanism underlying protective effect of PCT on ARHL-induced inner ear hair cell damage. In vivo experiments showed that PCT could protect mice from inflammatory aging-induced hearing loss as well as from inner hair cells (IHC) and spiral ganglion (SG) deficits. In addition, inflammatory vesicle inhibitor BAY11-7082 ameliorated ARHL, inhibited NLRP3 and reduced GSDMD expression. In in vitro experiments we used LPS and D-gal to simulate the aging inflammatory environment. The results showed that intracellular reactive oxygen species levels, expression of Caspase-11, NLRP3, and GSDMD were significantly increased, yet treatment with PCT or BAY11-7082 significantly improved HEI-OC-1 cell injury while reducing inflammation-associated protein expression as well as the occurrence of pyroptosis. In conclusion, these results suggest a protective role for PCT against ARHL, possibly through Caspase-11-GSDMD pathway. Our findings may provide a new target and theoretical basis for hearing loss treatment using PCT.
Collapse
Affiliation(s)
- Xu Yang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yanlin Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Menglian Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lingyu Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Tianhao Zhao
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Weiwei Qian
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mengmei Zhu
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xinya Wang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Qiannuo Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China.
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
24
|
Du P, Liu T, Luo P, Li H, Tang W, Zong S, Xiao H. SIRT3/GLUT4 signaling activation by metformin protect against cisplatin-induced ototoxicity in vitro. Arch Toxicol 2023; 97:1147-1162. [PMID: 36800006 DOI: 10.1007/s00204-023-03457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Cisplatin is highly effective for killing tumor cells. However, as one of its side effects, ototoxicity limits the clinical application of cisplatin. The mechanisms of cisplatin-induced ototoxicity have not been fully clarified yet. SIRT3 is a deacetylated protein mainly located in mitochondria, which regulates a variety of physiological processes in cells. The role of SIRT3 in cisplatin-induced hair cell injury has not been founded. In this study, primary cultured cochlear explants exposed to 5 μM cisplatin, as well as OC-1 cells exposed to 10 μM cisplatin, were used to establish models of cisplatin-induced ototoxicity in vitro. We found that when combined with cisplatin, metformin (75 μM) significantly up-regulated the expression of SIRT3 and alleviated cisplatin-induced apoptosis of hair cells. We regulated the expression of SIRT3 to explore the role of SIRT3 in cisplatin-induced auditory hair cell injury. Overexpression of SIRT3 promoted the survival of auditory hair cells and alleviated the apoptosis of auditory hair cells. In contrast, knockdown of SIRT3 impaired the protective effect of metformin and exacerbated cisplatin injury. In addition, we found that the protective effect of SIRT3 may be achieved by regulating GLUT4 translocation and rescuing impaired glucose uptake caused by cisplatin. Our study confirmed that upregulation of SIRT3 may antagonize cisplatin-induced ototoxicity, and provided a new perspective for the study of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Peiyu Du
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Luo
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Wuhan, China
| | - Hejie Li
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tang
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shimin Zong
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongjun Xiao
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Campbell T, Hawsawi O, Henderson V, Dike P, Hwang BJ, Liadi Y, White EZ, Zou J, Wang G, Zhang Q, Bowen N, Scott D, Hinton CV, Odero-Marah V. Novel roles for HMGA2 isoforms in regulating oxidative stress and sensitizing to RSL3-Induced ferroptosis in prostate cancer cells. Heliyon 2023; 9:e14810. [PMID: 37113783 PMCID: PMC10126861 DOI: 10.1016/j.heliyon.2023.e14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.
Collapse
Affiliation(s)
- Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Veronica Henderson
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Precious Dike
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Yusuf Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - ElShaddai Z. White
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - GuangDi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Derrick Scott
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
- Corresponding author. Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
26
|
Zhang Q, Yao Z, Chen F, Wang X, Wang M, Lu J, Meng Y, Xu L, Han Y, Liu W, Wang H. TIGAR Protects Cochlear Hair Cells against Teicoplanin-Induced Damage. Mol Neurobiol 2023; 60:3788-3802. [PMID: 36943624 PMCID: PMC10029784 DOI: 10.1007/s12035-023-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Teicoplanin is a glycopeptide antibiotic used to treat severe staphylococcal infections. It has been claimed that teicoplanin possesses ototoxic potential, although its toxic effects on cochlear hair cells (HCs) remain unknown. The TP53-induced glycolysis and apoptosis regulator (TIGAR) plays a crucial role in promoting cell survival. Prior research has demonstrated that TIGAR protects spiral ganglion neurons against cisplatin damage. However, the significance of TIGAR in damage to mammalian HCs has not yet been investigated. In this study, firstly, we discovered that teicoplanin caused dose-dependent cell death in vitro in both HEI-OC1 cells and cochlear HCs. Next, we discovered that HCs and HEI-OC1 cells treated with teicoplanin exhibited a dramatically decrease in TIGAR expression. To investigate the involvement of TIGAR in inner ear injury caused by teicoplanin, the expression of TIGAR was either upregulated via recombinant adenovirus or downregulated by shRNA in HEI-OC1 cells. Overexpression of TIGAR increased cell viability, decreased apoptosis, and decreased intracellular reactive oxygen species (ROS) level, whereas downregulation of TIGAR decreased cell viability, exacerbated apoptosis, and elevated ROS level following teicoplanin injury. Finally, antioxidant therapy with N-acetyl-L-cysteine decreased ROS level, prevented cell death, and restored p38/phosphorylation-p38 expression levels in HEI-OC1 cells injured by teicoplanin. This study demonstrates that TIGAR may be a promising novel target for the prevention of teicoplanin-induced ototoxicity.
Collapse
Affiliation(s)
- Qiongmin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Zhiqun Yao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| |
Collapse
|
27
|
Qu Y, Zong S, Wang Z, Du P, Wen Y, Li H, Wu N, Xiao H. The PERK/ATF4/CHOP signaling branch of the unfolded protein response mediates cisplatin-induced ototoxicity in hair cells. Drug Chem Toxicol 2023; 46:369-379. [PMID: 35172660 DOI: 10.1080/01480545.2022.2039181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent. However, its clinical application remains limited due to the high incidence of severe ototoxicity. It has been reported that the unfolded protein response (UPR) is involved in cisplatin-induced ototoxicity. However, the specific mechanism underlying its effect remains unclear. Therefore, the present study aimed to explore the sequential changes in the key UPR signaling branch and its potential pro-apoptotic role in cisplatin-induced ototoxicity. The hair cell-like OC-1 cells were treated with cisplatin for different periods and then the expression levels of the UPR- and apoptosis-related proteins were determined. The results showed that the apoptotic rate of cells was gradually increased with prolonged cisplatin treatment. Furthermore, the sequential changes in three UPR signaling branches were evaluated. The expression levels of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were gradually increased with up to 12 h of cisplatin treatment. The aforementioned expression profile was consistent with that observed for the apoptosis-related proteins. Subsequently, the proportion of apoptotic cells was notably decreased in CHOP-silenced hair cell-like OC-1 cells following treatment with cisplatin. Moreover, we found significant hair cells loss and a higher level of CHOP in cisplatin-treated cochlear explants in a time-dependent manner. Overall, the present study demonstrated that the protein kinase RNA‑like endoplasmic reticulum kinase (PERK)/ATF4/CHOP signaling branch could play an important role in cisplatin-induced cell apoptosis. Furthermore, the current study suggested that CHOP may be considered as a promising therapeutic target for cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yanji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Wang J, Zheng J, Wang H, He H, Li S, Zhang Y, Wang Y, Xu X, Wang S. Gene therapy: an emerging therapy for hair cells regeneration in the cochlea. Front Neurosci 2023; 17:1177791. [PMID: 37207182 PMCID: PMC10188948 DOI: 10.3389/fnins.2023.1177791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Sensorineural hearing loss is typically caused by damage to the cochlear hair cells (HCs) due to external stimuli or because of one's genetic factors and the inability to convert sound mechanical energy into nerve impulses. Adult mammalian cochlear HCs cannot regenerate spontaneously; therefore, this type of deafness is usually considered irreversible. Studies on the developmental mechanisms of HC differentiation have revealed that nonsensory cells in the cochlea acquire the ability to differentiate into HCs after the overexpression of specific genes, such as Atoh1, which makes HC regeneration possible. Gene therapy, through in vitro selection and editing of target genes, transforms exogenous gene fragments into target cells and alters the expression of genes in target cells to activate the corresponding differentiation developmental program in target cells. This review summarizes the genes that have been associated with the growth and development of cochlear HCs in recent years and provides an overview of gene therapy approaches in the field of HC regeneration. It concludes with a discussion of the limitations of the current therapeutic approaches to facilitate the early implementation of this therapy in a clinical setting.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ya Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - You Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: You Wang,
| | - Xiaoxiang Xu
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Xiaoxiang Xu,
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Shuyi Wang,
| |
Collapse
|
29
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Zhang N, Li N, Wang S, Xu W, Liu J, Lyu Y, Li X, Song Y, Kong L, Liu Y, Guo J, Fan Z, Zhang D, Wang H. Protective effect of anakinra on audiovestibular function in a murine model of endolymphatic hydrops. Front Cell Neurosci 2022; 16:1088099. [PMID: 36589291 PMCID: PMC9798291 DOI: 10.3389/fncel.2022.1088099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Ménière's disease (MD), a common disease in the inner ear, is characterized by an increase in endolymph in the cochlear duct and vestibular labyrinth. The pathophysiology of the condition appears to be the immune response. Studies have shown that basal levels of the IL-1β increased in some MD patients. Methods Here, we used a murine model of endolymphatic hydrops (EH) to study the effect of anakinra on auditory and vestibular function. Mice were intraperitoneal injected with anakinra or saline before LPS by postauricular injection. Weight and disease severity were measured, histologic changes in auditory were assessed, and inflammation state was evaluated. Results We found that anakinra therapy reduced LPS-induced EH, alleviated LPS-induced hearing loss and vestibular dysfunction, and inhibited the expression of the inflammatory cytokines and macrophage infiltration in the cochlea of mice. We further demonstrated that anakinra ameliorated the disorganization and degeneration of myelin sheath, and reduced the neuron damage in cochlea of EH mice. Discussion Consequently, anakinra contributes to a promising therapeutic approach to MD, by restricting EH, alleviating auditory and vestibular function, inhibiting inflammation of the inner ear and protecting the cochlear nerve. Further investigations are needed to assess the potential therapeutic benefits of anakinra in patients with MD.
Collapse
Affiliation(s)
- Na Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China,Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Siyue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Wandi Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Jiahui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yafeng Lyu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yongdong Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Ligang Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yalan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Jia Guo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China,*Correspondence: Daogong Zhang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Vertigo and Dizziness Medical Center, Jinan, Shandong, China,Laboratory of Vertigo Disease, Shandong Second Provincial General Hospital, Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China,Haibo Wang,
| |
Collapse
|
31
|
Luo J, Wang J, Zhang J, Sang A, Ye X, Cheng Z, Li X. Nrf2 Deficiency Exacerbated CLP-Induced Pulmonary Injury and Inflammation through Autophagy- and NF-κB/PPARγ-Mediated Macrophage Polarization. Cells 2022; 11:cells11233927. [PMID: 36497185 PMCID: PMC9735993 DOI: 10.3390/cells11233927] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The balance between M1 and M2 macrophage polarization is involved in the regulation of pulmonary inflammation. Nuclear factor erythroid-derived 2-like 2 (Nfe2l2, also known as Nrf2), a nuclear transcription factor, is reported to play protective roles in acute lung injury (ALI) and inflammation, and increasing evidence indicates that the protective effects of Nrf2 are closely related to autophagy. This study aimed to explore whether Nrf2 is involved in sepsis-induced acute pulmonary injury and inflammation and in the role of macrophage polarization in the process. In the present study, sepsis patients, an Nrf2 knockout mouse that underwent cecal ligation and puncture (CLP), and lipopolysaccharide (LPS)-treated macrophage cell lines were employed to investigate the potential functions of Nrf2 in sepsis-induced lung injury and the underlying mechanisms. Clinical studies showed that the NRF2 mRNA level was inversely correlated with pulmonary inflammation and disease severity in patients with sepsis. Analyses in a CLP-treated Nrf2 knockout mouse model indicated that an Nrf2 deficiency promoted a CLP-induced increase in M1 macrophage polarization and apoptosis and inhibited CLP-induced upregulation of the autophagy level in lung tissues. Experiments in RAW264.7 cells revealed that Nrf2 overexpression inhibited M1 macrophage polarization but promoted M2 macrophage polarization by improving the autophagy, and Nrf2 overexpression promoted PPARγ but inhibited NF-κB nuclear translocation. In conclusion, these results indicate that Nrf2 plays a protective role in sepsis-induced pulmonary injury and inflammation through the regulation of autophagy- and NF-κB/PPARγ-mediated macrophage polarization.
Collapse
Affiliation(s)
- Jing Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Aming Sang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan 430071, China
- Correspondence: (Z.C.); or (X.L.)
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (Z.C.); or (X.L.)
| |
Collapse
|
32
|
Parker A, Parham K, Skoe E. Age-related declines to serum prestin levels in humans. Hear Res 2022; 426:108640. [DOI: 10.1016/j.heares.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
|
33
|
YTHDF1 Protects Auditory Hair Cells from Cisplatin-Induced Damage by Activating Autophagy via the Promotion of ATG14 Translation. Mol Neurobiol 2022; 59:7134-7151. [PMID: 36097301 DOI: 10.1007/s12035-022-03021-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
N6-methyladenosine (m6A) has been recognized as a common type of post-transcriptional epigenetic modification. m6A modification and YTHDF1, one of its reader proteins, have been documented to play a pivotal role in numerous human diseases via regulating mRNA splicing, translation, stability, and subcellular localization. The chemotherapeutic drug cisplatin (CDP) can damage sensory hair cells (HCs) and result in permanent sensorineural hearing loss. However, whether YTHDF1-mediated modification of mRNA is potentially involved in CDP-induced injury in sensory hair cells was not fully clarified. This study investigated the potential mechanisms for the modification of YTHDF1 in CDP-induced damage in HCs. Here, we discovered that YTHDF1's expression level statistically increased significantly after treating with CDP. Apoptosis and cell death of HCs induced by CDP were exacerbated after the knockdown of YTHDF1, while overexpression of YTHDF1 in HCs alleviated their injury induced by CDP. Moreover, YTHDF1 expression correlated with cisplatin-induced autophagy with statistical significance in HCs; namely, YTHDF1's overexpression enhanced the activation of autophagy, while its deficiency suppressed autophagy and, at the same time, increased the loss of HCs after CDP damage. WB analysis and qRT-PCR results of autophagy-related genes indicated that YTHDF1 promoted the translation of autophagy-related genes ATG14, thus boosting autophagy. Therefore, CDP-induced YTHDF1 expression protected HCs against CDP-induced apoptosis by upregulating the translation of autophagy-related genes ATG14, along with enhancing autophagy. Based on these findings, it can be inferred that YTHDF1 is potentially a target for ameliorating drug-induced HCs damage through m6A modification.
Collapse
|
34
|
Kinesin spindle protein inhibitor exacerbates cisplatin-induced hair cell damage. Arch Biochem Biophys 2022; 731:109432. [DOI: 10.1016/j.abb.2022.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022]
|
35
|
Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:cells11203331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
|
36
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
37
|
Wan H, Zhang Y, Hua Q. Cellular autophagy, the compelling roles in hearing function and dysfunction. Front Cell Neurosci 2022; 16:966202. [PMID: 36246522 PMCID: PMC9561951 DOI: 10.3389/fncel.2022.966202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is currently a major health issue. As one of the most common neurodegenerative diseases, SNHL is associated with the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria vascularis, supporting cells and central auditory system cells. Autophagy is a highly integrated cellular system that eliminates impaired components and replenishes energy to benefit cellular homeostasis. Etiological links between autophagy alterations and neurodegenerative diseases, such as SNHL, have been established. The hearing pathway is complex and depends on the comprehensive functions of many types of tissues and cells in auditory system. In this review, we discuss the roles of autophagy in promoting and inhibiting hearing, paying particular attention to specific cells in the auditory system, as discerned through research. Hence, our review provides enlightening ideas for the role of autophagy in hearing development and impairment.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanyuan Zhang,
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qingquan Hua,
| |
Collapse
|
38
|
Gao X, Ma K, Yang H, Wang K, Fu B, Zhu Y, She X, Cui B. A rapid, non-invasive method for fatigue detection based on voice information. Front Cell Dev Biol 2022; 10:994001. [PMID: 36176279 PMCID: PMC9513181 DOI: 10.3389/fcell.2022.994001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
Fatigue results from a series of physiological and psychological changes due to continuous energy consumption. It can affect the physiological states of operators, thereby reducing their labor capacity. Fatigue can also reduce efficiency and, in serious cases, cause severe accidents. In addition, it can trigger pathological-related changes. By establishing appropriate methods to closely monitor the fatigue status of personnel and relieve the fatigue on time, operation-related injuries can be reduced. Existing fatigue detection methods mostly include subjective methods, such as fatigue scales, or those involving the use of professional instruments, which are more demanding for operators and cannot detect fatigue levels in real time. Speech contains information that can be used as acoustic biomarkers to monitor physiological and psychological statuses. In this study, we constructed a fatigue model based on the method of sleep deprivation by collecting various physiological indexes, such as P300 and glucocorticoid level in saliva, as well as fatigue questionnaires filled by 15 participants under different fatigue procedures and graded the fatigue levels accordingly. We then extracted the speech features at different instances and constructed a model to match the speech features and the degree of fatigue using a machine learning algorithm. Thus, we established a method to rapidly judge the degree of fatigue based on speech. The accuracy of the judgment based on unitary voice could reach 94%, whereas that based on long speech could reach 81%. Our fatigue detection method based on acoustic information can easily and rapidly determine the fatigue levels of the participants. This method can operate in real time and is non-invasive and efficient. Moreover, it can be combined with the advantages of information technology and big data to expand its applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Cui
- *Correspondence: Xiaojun She, ; Bo Cui,
| |
Collapse
|
39
|
Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2022; 29:479-497. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Collapse
|
40
|
Hou S, Zhang J, Wu Y, Junmin C, Yuyu H, He B, Yang Y, Hong Y, Chen J, Yang J, Li S. FGF22 deletion causes hidden hearing loss by affecting the function of inner hair cell ribbon synapses. Front Mol Neurosci 2022; 15:922665. [PMID: 35966010 PMCID: PMC9366910 DOI: 10.3389/fnmol.2022.922665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Ribbon synapses are important structures in transmitting auditory signals from the inner hair cells (IHCs) to their corresponding spiral ganglion neurons (SGNs). Over the last few decades, deafness has been primarily attributed to the deterioration of cochlear hair cells rather than ribbon synapses. Hearing dysfunction that cannot be detected by the hearing threshold is defined as hidden hearing loss (HHL). The relationship between ribbon synapses and FGF22 deletion remains unknown. In this study, we used a 6-week-old FGF22 knockout mice model (Fgf22–/–) and mainly focused on alteration in ribbon synapses by applying the auditory brainstem response (ABR) test, the immunofluorescence staining, the patch-clamp recording, and quantitative real-time PCR. In Fgf22–/– mice, we found the decreased amplitude of ABR wave I, the reduced vesicles of ribbon synapses, and the decreased efficiency of exocytosis, which was suggested by a decrease in the capacitance change. Quantitative real-time PCR revealed that Fgf22–/– led to dysfunction in ribbon synapses by downregulating SNAP-25 and Gipc3 and upregulating MEF2D expression, which was important for the maintenance of ribbon synapses’ function. Our research concluded that FGF22 deletion caused HHL by affecting the function of IHC ribbon synapses and may offer a novel therapeutic target to meet an ever-growing demand for deafness treatment.
Collapse
Affiliation(s)
- Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yan Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chen Junmin
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huang Yuyu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yan Yang
- Liaoning Medical Device Test Institute, Shenyang, China
| | - Yuren Hong
- Laboratory of Electron Microscope Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiarui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiarui Chen,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| | - Shuna Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shuna Li,
| |
Collapse
|
41
|
Zhao C, Liang W, Yang Z, Chen Z, Du Z, Gong S. SIRT3-mediated deacetylation protects inner hair cell synapses in a H 2O 2-induced oxidative stress model in vitro. Exp Cell Res 2022; 418:113280. [PMID: 35835175 DOI: 10.1016/j.yexcr.2022.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
Abstract
Oxidative stress is considered a driving event in the damage to inner hair cell (IHC) synapses. Mitochondrial deacetylase Sirtuin 3 (SIRT3) is an important regulator of reactive oxygen species (ROS) production. However, the effect of SIRT3 on IHC synapses remains elusive. In this study, we treated cochlear basilar membrane (CBM) with hydrogen peroxide (H2O2) to establish an oxidative stress model in vitro. The H2O2-induced CBM exhibited decreased the number of IHC synapses with low levels of ATP and mitochondrial membrane potential. Additionally, H2O2-incuded CBM showed markedly reduced levels of forkhead box protein O 3a (FOXO3a), superoxide dismutase 2 (SOD2), and isocitrate dehydrogenase 2 (IDH2), thereby increasing ROS generation. SIRT3 overexpression via administrating nicotinamide riboside in the H2O2-induced CBM protected IHC synapses against oxidative stress and inhibited hair cell apoptosis. We further demonstrated that SIRT3 overexpression led to upregulation of IDH2, and hypoacetylation of several proteins, such as FOXO3a and SOD2, which in turn reduced the levels of ROS and improved mitochondrial function. Collectively, these findings reveal that SIRT3 may be a potential therapeutic approach for damaged IHC synapses induced by oxidative stress.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
42
|
Jin Y, Liu XZ, Xie L, Xie W, Chen S, Sun Y. Targeted Next-Generation Sequencing Identified Novel Compound Heterozygous Variants in the PTPRQ Gene Causing Autosomal Recessive Hearing Loss in a Chinese Family. Front Genet 2022; 13:884522. [PMID: 35899188 PMCID: PMC9310072 DOI: 10.3389/fgene.2022.884522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is among the most common congenital sensory impairments. Genetic causes account for more than 50% of the cases of congenital hearing loss. The PTPRQ gene, encoding protein tyrosine phosphatase receptor Q, plays an important role in maintaining the stereocilia structure and function of hair cells. Mutations in the PTPRQ gene have been reported to cause hereditary sensorineural hearing loss. By using next-generation sequencing and Sanger sequencing, we identified a novel compound heterozygous mutation (c.997 G > A and c.6603-3 T > G) of the PTPRQ gene in a Chinese consanguineous family. This is the first report linking these two mutations to recessive hereditary sensorineural hearing loss. These findings contribute to the understanding of the relationship between genotype and hearing phenotype of PTPRQ-related hearing loss, which may be helpful to clinical management and genetic counseling.
Collapse
Affiliation(s)
- Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Institute of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yu Sun,
| |
Collapse
|
43
|
Nrf2 Knockout Affected the Ferroptosis Signaling Pathway against Cisplatin-Induced Hair Cell-Like HEI-OC1 Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2210733. [PMID: 35814275 PMCID: PMC9270153 DOI: 10.1155/2022/2210733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Cisplatin is a well-known and widely used anticancer drug with high therapeutic efficacy in solid tumors; however, side effects are common with its use. Because cisplatin can be retained in the cochlea, ototoxicity leading to hearing loss limits its clinical applications. Here, we report that Nrf2 knockout (KO) strongly increased cisplatin resistance in HEI-OC1 cells, which are immortalized cells from the murine organ of Corti. The underlying mechanism of this phenomenon was uncovered, and an important novel therapeutic target for combating cisplatin-induced hearing loss was identified. Preliminary investigations determined that Nrf2 KO markedly decreased TfR1 protein levels and increased GPX4 protein levels. Thus, ferroptosis may protect organisms from cisplatin-induced cell death. Furthermore, Nrf2 KO cells were resistant to the classical ferroptosis inducers RSL3 and erastin, providing solid evidence that Nrf2 KO inhibits ferroptosis and that knocking out Nrf2 may be a new clinical strategy to prevent cisplatin-induced hearing loss.
Collapse
|
44
|
A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation. Biomed Pharmacother 2022; 150:113071. [PMID: 35658237 DOI: 10.1016/j.biopha.2022.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+), a coenzyme that plays crucial roles in many cellular processes, is a potential therapeutic target for various diseases. Dihydronicotinamide riboside (NRH), a novel reduced form of nicotinamide riboside, has emerged as a potent NAD+ precursor. Here, we studied the protective effects and underlying mechanism of NRH on aminoglycoside-induced ototoxicity. METHODS Auditory function and hair-cell (HC) morphology were examined to assess the effects of NRH on kanamycin-induced hearing loss. The pharmacokinetic parameters of NRH were measured in plasma and the cochlea using liquid chromatography tandem mass spectrometry. NAD+ levels in organ explant cultures were assessed to compare NRH with known NAD+ precursors. Immunofluorescence analysis was performed to detect reactive oxygen species (ROS) and apoptosis. We analyzed SIRT1 and 14-3-3 protein expression. EX527 and resveratrol were used to investigate the role of SIRT1 in the protective effect of NRH against kanamycin-induced ototoxicity. RESULTS NRH alleviated kanamycin-induced HC damage and attenuated hearing loss in mice. NRH reduced gentamicin-induced vestibular HC loss. Compared with NAD and NR, NRH produced more NAD+ in cochlear HCs and significantly ameliorated kanamycin-induced oxidative stress and apoptosis. NRH rescued the aminoglycoside-induced decreases in SIRT1 and 14-3-3 protein expression. Moreover, EX527 antagonized the protective effect of NRH on kanamycin-induced HC loss by inhibition of SIRT1, while resveratrol alleviated HC damage caused by EX527. CONCLUSIONS NRH ameliorates aminoglycoside-induced ototoxicity by inhibiting HC apoptosis by activating SIRT1 and decreasing ROS. NRH is an effective therapeutic option for aminoglycoside-induced ototoxicity.
Collapse
|
45
|
Yu W, Zong S, Zhou P, Wei J, Wang E, Ming R, Xiao H. Cochlear Marginal Cell Pyroptosis Is Induced by Cisplatin via NLRP3 Inflammasome Activation. Front Immunol 2022; 13:823439. [PMID: 35529876 PMCID: PMC9067579 DOI: 10.3389/fimmu.2022.823439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Better understanding the mechanism of cisplatin-induced ototoxicity is of great significance for clinical prevention and treatment of cisplatin-related hearing loss. However, the mechanism of cisplatin-induced inflammatory response in cochlear stria vascularis and the mechanism of marginal cell (MC) damage have not been fully clarified. In this study, a stable model of cisplatin-induced MC damage was established in vitro, and the results of PCR and Western blotting showed increased expressions of NLRP3, Caspase-1, IL-1β, and GSDMD in MCs. Incomplete cell membranes including many small pores appearing on the membrane were also observed under transmission electron microscopy and scanning electron microscopy. In addition, downregulation of NLRP3 by small interfering RNA can alleviate cisplatin-induced MC pyroptosis, and reducing the expression level of TXNIP possesses the inhibition effect on NLRP3 inflammasome activation and its mediated pyroptosis. Taken together, our results suggest that NLRP3 inflammasome activation may mediate cisplatin-induced MC pyroptosis in cochlear stria vascularis, and TXNIP is a possible upstream regulator, which may be a promising therapeutic target for alleviating cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Metabolomics Analysis Reveals Alterations in Cochlear Metabolic Profiling in Mice with Noise-Induced Hearing Loss. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9548316. [PMID: 35686233 PMCID: PMC9173918 DOI: 10.1155/2022/9548316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Noise-induced hearing loss (NIHL) has always been an important occupational hazard, but the exact etiopathogenesis underlying NIHL remains unclear. Herein, we aimed to find metabolic biomarkers involved in the development of NIHL based on a mouse model using a gas chromatography coupled with mass spectrometry (GC-MS) metabolomics technique. We showed that the auditory brainstem response (ABR) thresholds at the frequencies of 4, 8, 12, 16, 24, and 32 kHz were all significantly elevated in the noise-exposed mice. Noise could cause outer hair cell (OHC) loss in the base of the cochlea. A total of 17 differential metabolites and 9 metabolic pathways were significantly affected following noise exposure. Spermidine acting as an autophagy modulator was found to be 2.85-fold higher in the noise-exposed group than in the control group and involved in β-alanine metabolism and arginine and proline metabolism pathways. Additionally, we demonstrated that LC3B and Beclin1 were expressed in the spiral ganglion neurons (SGNs), and their mRNA levels were increased after noise. We showed that SOD activity was significantly decreased in the cochlea of noise-exposed mice. Further experiments suggested that SOD1 and SOD2 proteins in the SGNs were all decreased following noise exposure. The upregulation of spermidine may induce LC3B- and Beclin1-mediated autophagy in the cochlear hair cells (HCs) through β-alanine metabolism and arginine and proline metabolism and be involved in the NIHL. ROS-mediated oxidative damage may be a pivotal molecular mechanism of NIHL. Taken together, spermidine can be regarded as an important metabolic marker for the diagnosis of NIHL.
Collapse
|
47
|
Huang Y, Mao H, Chen Y. Regeneration of Hair Cells in the Human Vestibular System. Front Mol Neurosci 2022; 15:854635. [PMID: 35401109 PMCID: PMC8987309 DOI: 10.3389/fnmol.2022.854635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is a critical part of the human balance system, malfunction of this system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells, the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and virus infection, and have a limited restorative capacity after damage. Considering that no artificial device can be used to replace vestibular hair cells, promoting vestibular hair cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the development of human vestibular hair cells during the whole embryonic stage and the latest research on human vestibular hair cell regeneration is summarized. The limitations of current studies are emphasized and future directions are discussed.
Collapse
Affiliation(s)
- Yikang Huang
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huanyu Mao
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yan Chen,
| |
Collapse
|
48
|
Chen P, Hao JJ, Li MW, Bai J, Guo YT, Liu Z, Shi P. Integrative Functional Transcriptomic Analyses Implicate Shared Molecular Circuits in Sensorineural Hearing Loss. Front Cell Neurosci 2022; 16:857344. [PMID: 35370561 PMCID: PMC8964368 DOI: 10.3389/fncel.2022.857344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is referred to as the most common type of hearing loss and typically occurs when the inner ear or the auditory nerve is damaged. Aging, noise exposure, and ototoxic drugs represent three main causes of SNHL, leading to substantial similarities in pathophysiological characteristics of cochlear degeneration. Although the common molecular mechanisms are widely assumed to underlie these similarities, its validity lacks systematic examination. To address this question, we generated three SNHL mouse models from aging, noise exposure, and cisplatin ototoxicity, respectively. Through constructing gene co-expression networks for the cochlear transcriptome data across different hearing-damaged stages, the three models are found to significantly correlate with each other in multiple gene co-expression modules that implicate distinct biological functions, including apoptosis, immune, inflammation, and ion transport. Bioinformatics analyses reveal several potential hub regulators, such as IL1B and CCL2, both of which are verified to contribute to apoptosis accompanied by the increase of (ROS) in in vitro model system. Our findings disentangle the shared molecular circuits across different types of SNHL, providing potential targets for the broad effective therapeutic agents in SNHL.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Wen Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Bai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Ting Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Zhen Liu,
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Peng Shi,
| |
Collapse
|
49
|
Guo R, Xu Y, Xiong W, Wei W, Qi Y, Du Z, Gong S, Tao Z, Liu K. Autophagy-Mediated Synaptic Refinement and Auditory Neural Pruning Contribute to Ribbon Synaptic Maturity in the Developing Cochlea. Front Mol Neurosci 2022; 15:850035. [PMID: 35310883 PMCID: PMC8931412 DOI: 10.3389/fnmol.2022.850035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
In rodents, massive initial synapses are formed in the auditory peripheral nervous system at the early postnatal stage, and one of the major phenomena is that the number of afferent synapses in the cochlea is significantly reduced in the duration of development. This raises the hypothesis that the number of cochlear ribbon synapses are dramatically changed with hearing development and maturation. In this study, several tracers identifying activities of autophagy were applied to estimate the level of autophagy activity in the process of ribbon synapse development in mice; further, changes in the synaptic number and spiral ganglion nerve (SGN) fibers were quantitatively measured. We found robust expression of LC3B and lysosomal-associated membrane protein 1 as well as LysoTracker in or near inner hair cells and cochlear ribbon synapses in the early stage of postnatal development. Moreover, we found a significant loss in the intensity of SGN fibers at ribbon synaptic development and hearing onset. Thus, this study demonstrates that ribbon synaptic refinement and SGN fibers pruning are closely associated with the morphological and functional maturation of ribbon synapses and that synaptic refinement and SGN fiber pruning are regulated by the robust activities of autophagy in the earlier stages of auditory development.
Collapse
Affiliation(s)
- Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yice Xu
- Department of Otolaryngology Head and Neck Surgery, Xiaogan Central Hospital, Wuhan University of Science and Technology, Xiaogan, China
| | - Wei Xiong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Shusheng Gong,
| | - Zezhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Ke Liu,
| |
Collapse
|
50
|
Sun L, Gao D, Chen J, Hou S, Li Y, Huang Y, Mammano F, Chen J, Yang J. Failure Of Hearing Acquisition in Mice With Reduced Expression of Connexin 26 Correlates With the Abnormal Phasing of Apoptosis Relative to Autophagy and Defective ATP-Dependent Ca2+ Signaling in Kölliker’s Organ. Front Cell Neurosci 2022; 16:816079. [PMID: 35308122 PMCID: PMC8928193 DOI: 10.3389/fncel.2022.816079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations in the GJB2 gene that encodes connexin 26 (Cx26) are the predominant cause of prelingual hereditary deafness, and the most frequently encountered variants cause complete loss of protein function. To investigate how Cx26 deficiency induces deafness, we examined the levels of apoptosis and autophagy in Gjb2loxP/loxP; ROSA26CreER mice injected with tamoxifen on the day of birth. After weaning, these mice exhibited severe hearing impairment and reduced Cx26 expression in the cochlear duct. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells were observed in apical, middle, and basal turns of Kölliker’s organ at postnatal (P) day 1 (P1), associated with increased expression levels of cleaved caspase 3, but decreased levels of autophagy-related proteins LC3-II, P62, and Beclin1. In Kölliker’s organ cells with decreased Cx26 expression, we also found significantly reduced levels of intracellular ATP and hampered Ca2+ responses evoked by extracellular ATP application. These results offer novel insight into the mechanisms that prevent hearing acquisition in mouse models of non-syndromic hearing impairment due to Cx26 loss of function.
Collapse
Affiliation(s)
- Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuyu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Biochemistry and Cell Biology, Italian National Research Council, Monterotondo, Italy
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| |
Collapse
|