1
|
Kim KH, Oprescu SN, Snyder MM, Kim A, Jia Z, Yue F, Kuang S. PRMT5 mediates FoxO1 methylation and subcellular localization to regulate lipophagy in myogenic progenitors. Cell Rep 2023; 42:113329. [PMID: 37883229 PMCID: PMC10727913 DOI: 10.1016/j.celrep.2023.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Development is regulated by various factors, including protein methylation status. While PRMT5 is well known for its roles in oncogenesis by mediating symmetric di-methylation of arginine, its role in normal development remains elusive. Using Myod1Cre to drive Prmt5 knockout in embryonic myoblasts (Prmt5MKO), we dissected the role of PRMT5 in myogenesis. The Prmt5MKO mice are born normally but exhibit progressive muscle atrophy and premature death. Prmt5MKO inhibits proliferation and promotes premature differentiation of embryonic myoblasts, reducing the number and regenerative function of satellite cells in postnatal mice. Mechanistically, PRMT5 methylates and destabilizes FoxO1. Prmt5MKO increases the total FoxO1 level and promotes its cytoplasmic accumulation, leading to activation of autophagy and depletion of lipid droplets (LDs). Systemic inhibition of autophagy in Prmt5MKO mice restores LDs in myoblasts and moderately improves muscle regeneration. Together, PRMT5 is essential for muscle development and regeneration at least partially through mediating FoxO1 methylation and LD turnover.
Collapse
Affiliation(s)
- Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Aran Kim
- Department of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Talib Mohammed W, Mahmood Alubadi AE, Munshed Alosami MH. Evaluation of serum Interleukin 36 in Iraqi patients with Rheumatoid arthritis. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
Rheumatoid arthritis is a worldwide inflammatory chronic autoimmune disease with varying severity. Due to no definitive cure for this disease, current therapies aim to decrease the pain and slow further damage. The interleukin (IL)‐36 cytokine was little known for its role in rheumatoid arthritis; this research aimed to evaluate the serum IL36 levels in RA patients compared to healthy controls. This study included 80 patients with rheumatoid arthritis registered at the Rheumatology Clinic in Baghdad teaching hospital. The patients were divided into three groups based on the treatments received. Group 1 included patients treated with biological therapy (etanercept, adalimumab), Group2 patients with non-biological treatment (methotrexate hydroxychloroquine and prednisone), Group3 patients without any treatment and compared with Group 4 healthy control group. Patients is all groups were assessed for their serum IL-36 concentration; the mean IL-36 serum level was significantly higher in three groups of RA patients which include the group of patients treated with biological therapy (Enbrel (etanercept) and Humira (adalimumab) means were (1132.41±475.2,), and group of non-biological therapy patients (Methotrexate hydroxychloroquine and prednisone) (G2) means was 553.95±307, than patients' group without any treatment (G3) means was 1044.01±575.3 compared to the control (341.38±113.1) p-value> 0.00001. The patient's age and BMI were not significantly different between three groups of patient Rheumatoid arthritis. Parameters for this disease also were tested which include RF, CRP, ESR, anti-CCP and disease activity score-28 (DAS 28), there were significant differences when compared with the control group. IL-36 serum level was significantly higher in three groups of rheumatoid arthritis than those in controls, and when compared between three patients groups there was less concentration in the non-biological therapy treatment group means was 553.95±307 than in the rest of the patient groups,biology tratment, without any treatment, means were (1132.41±475.2, 1044.01±575.3) respectively. This study found that Rheumatoid arthritis patients' serum IL36 levels increased, where a non-biologic therapies reduced this cytokine. IL-36's pathogenic involvement in Rheumatoid arthritis needs more study.
Keywords: Rheumatoid arthritis, IL-36, IL-1,C‐reactive protein, RF, ESR and anti-CCP.
Collapse
Affiliation(s)
- Wafaa Talib Mohammed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Wang H, Wang X, Li T, Lai D, Zhang YD. Adverse effect signature extraction and prediction for drugs treating COVID-19. Front Genet 2022; 13:1019940. [DOI: 10.3389/fgene.2022.1019940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Given the considerable cost of drug discovery, drug repurposing is becoming attractive as it can effectively shorten the development timeline and reduce the development cost. However, most existing drug-repurposing methods omitted the heterogeneous health conditions of different COVID-19 patients. In this study, we evaluated the adverse effect (AE) profiles of 106 COVID-19 drugs. We extracted four AE signatures to characterize the AE distribution of 106 COVID-19 drugs by non-negative matrix factorization (NMF). By integrating the information from four distinct databases (AE, bioassay, chemical structure, and gene expression information), we predicted the AE profiles of 91 drugs with inadequate AE feedback. For each of the drug clusters, discriminant genes accounting for mechanisms of different AE signatures were identified by sparse linear discriminant analysis. Our findings can be divided into three parts. First, drugs abundant with AE-signature 1 (for example, remdesivir) should be taken with caution for patients with poor liver, renal, or cardiac functions, where the functional genes accumulate in the RHO GTPases Activate NADPH Oxidases pathway. Second, drugs featuring AE-signature 2 (for example, hydroxychloroquine) are unsuitable for patients with vascular disorders, with relevant genes enriched in signal transduction pathways. Third, drugs characterized by AE signatures 3 and 4 have relatively mild AEs. Our study showed that NMF and network-based frameworks contribute to more precise drug recommendations.
Collapse
|
4
|
Yi J, Miao J, Zuo Q, Owusu F, Dong Q, Lin P, Wang Q, Gao R, Kong X, Yang L. COVID-19 pandemic: A multidisciplinary perspective on the pathogenesis of a novel coronavirus from infection, immunity and pathological responses. Front Immunol 2022; 13:978619. [PMID: 36091053 PMCID: PMC9459044 DOI: 10.3389/fimmu.2022.978619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus2 (SARS-CoV-2), has spread to more than 200 countries and regions, having a huge impact on human health, hygiene, and economic activities. The epidemiological and clinical phenotypes of COVID-19 have increased since the onset of the epidemic era, and studies into its pathogenic mechanisms have played an essential role in clinical treatment, drug development, and prognosis prevention. This paper reviews the research progress on the pathogenesis of the novel coronavirus (SARS-CoV-2), focusing on the pathogenic characteristics, loci of action, and pathogenic mechanisms leading to immune response malfunction of SARS-CoV-2, as well as summarizing the pathological damage and pathological manifestations it causes. This will update researchers on the latest SARS-CoV-2 research and provide directions for future therapeutic drug development.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiameng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingwei Zuo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiutong Dong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peizhe Lin
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Front Pharmacol 2022; 13:915565. [PMID: 35847031 PMCID: PMC9280161 DOI: 10.3389/fphar.2022.915565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune system is the first line of host's defense against invading pathogens. Multiple cellular sensors that detect viral components can induce innate antiviral immune responses. As a result, interferons and pro-inflammatory cytokines are produced which help in the elimination of invading viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to Coronaviridae family, and has a single-stranded, positive-sense RNA genome. It can infect multiple hosts; in humans, it is responsible for the novel coronavirus disease 2019 (COVID-19). Successful, timely, and appropriate detection of SARS-CoV-2 can be very important for the early generation of the immune response. Several drugs that target the innate immune receptors as well as other signaling molecules generated during the innate immune response are currently being investigated in clinical trials. In this review, we summarized the current knowledge of the mechanisms underlying host sensing and innate immune responses against SARS-CoV-2 infection, as well as the role of innate immune receptors in terms of their therapeutic potential against SARS-CoV-2. Moreover, we discussed the drugs undergoing clinical trials and the FDA approved drugs against SARS-CoV-2. This review will help in understanding the interactions between SARS-CoV-2 and innate immune receptors and thus will point towards new dimensions for the development of new therapeutics, which can be beneficial in the current pandemic.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| |
Collapse
|
6
|
Yadav H, Sen S, Nath T, Mazumdar S, Jain A, Verma P, Gupta P. Analysis of COVID-19-associated rhino-orbital-cerebral mucormycosis patients in a tertiary care center in Northern India. Indian J Ophthalmol 2022; 70:2163-2168. [PMID: 35648004 PMCID: PMC9359242 DOI: 10.4103/ijo.ijo_340_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose An unprecedented surge has been noted in rhino-orbital-Cerebral mucormycosis (ROCM) in times of current COVID-19 pandemic. The present prospective study aims to evaluate clinico-epidemiological profile, risk factors, management, and outcome of the cases of ROCM that presented to our tertiary care center during the study period from April to June 2021. Methods All patients were subjected to complete history taking, ophthalmological examination, and imaging studies. The patients were staged and were treated with intravenous liposomal amphotericin B (AMB) and sino-nasal debridement of local necrotic tissue. Transcutaneous retrobulbar AMB (TRAMB), orbital decompression, and exenteration were instituted as indicated. All patients were followed up for a minimum of 6 months before arriving at the final outcome. Statistical analysis was performed. Results A total of 49 patients presented during the study period, with a mean age of 42.2 years. The major risk factors included uncontrolled diabetes (89.8%), COVID-19 positivity (51.02%), and concurrent steroid use (38.77%). The most common presenting symptom was facial pain/swelling (43.65%), while the most common presenting sign was deterioration in vision (75.51%). Intravenous liposomal AMB was given to all patients along with sino-nasal debridement (85.71%), TRAMB (57.14%), orbital decompression (14.28%), and exenteration (12.24%). Overall, mortality at 6 months was 22.45% (11 patients). Age more than 60 years, intracranial extension, and HbA1c of more than 8.0% were observed to be statistically significant indicators of mortality. Conclusion Early suspicion and timely diagnosis of mucormycosis at rhino-orbital stage is warranted in order to salvage life as well as visual function. TRAMB may prove as potentially favorable treatment modality in cases with limited orbital involvement.
Collapse
Affiliation(s)
- Himanshu Yadav
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Snigdha Sen
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Tirupati Nath
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Shefali Mazumdar
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Anu Jain
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Pinky Verma
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Preeti Gupta
- Department of Ophthalmology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| |
Collapse
|
7
|
Liang H, Luo D, Liao H, Li S. Coronavirus Usurps the Autophagy-Lysosome Pathway and Induces Membranes Rearrangement for Infection and Pathogenesis. Front Microbiol 2022; 13:846543. [PMID: 35308399 PMCID: PMC8924481 DOI: 10.3389/fmicb.2022.846543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a crucial and conserved homeostatic mechanism for early defense against viral infections. Recent studies indicate that coronaviruses (CoVs) have evolved various strategies to evade the autophagy–lysosome pathway. In this minireview, we describe the source of double-membrane vesicles during CoV infection, which creates a microenvironment that promotes viral RNA replication and virion synthesis and protects the viral genome from detection by the host. Firstly, CoVs hijack autophagy initiation through non-structural proteins and open-reading frames, leading to the use of non-nucleated phagophores and omegasomes for autophagy-derived double-membrane vesicles. Contrastingly, membrane rearrangement by hijacking ER-associated degradation machinery to form ER-derived double-membrane vesicles independent from the typical autophagy process is another important routine for the production of double-membrane vesicles. Furthermore, we summarize the molecular mechanisms by which CoV non-structural proteins and open-reading frames are used to intercept autophagic flux and thereby evade host clearance and innate immunity. A comprehensive understanding of the above mechanisms may contribute to developing novel therapies and clinical drugs against coronavirus disease 2019 (COVID-19) in the future.
Collapse
Affiliation(s)
- Haowei Liang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.,School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hai Liao
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Muyldermans A, Maes P, Wawina-Bokalanga T, Anthierens T, Goldberg O, Bartiaux M, Soetens O, Wybo I, Van den Wijngaert S, Piérard D. Symptomatic severe acute respiratory syndrome coronavirus 2 reinfection in a lupus patient treated with hydroxychloroquine: a case report. J Med Case Rep 2021; 15:572. [PMID: 34836543 PMCID: PMC8620303 DOI: 10.1186/s13256-021-03159-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hydroxychloroquine and chloroquine have been used for hospitalized coronavirus disease 2019 patients because of their antiviral and anti-inflammatory function. However, little research has been published on the impact of the immunomodulatory effect of (hydroxy)chloroquine on humoral immunity. Case presentation We report a case of symptomatic severe acute respiratory syndrome coronavirus 2 reinfection, diagnosed 141 days after the first episode, in a 56-year-old man of Black African origin treated with hydroxychloroquine for lupus erythematosus. No anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies could be detected 127 days after the initial episode of coronavirus disease 2019. Conclusions The treatment with hydroxychloroquine probably explains the decreased immune response with negative serology and subsequent reinfection in our patient. As humoral immunity is crucial to fight a severe acute respiratory syndrome coronavirus 2 infection, the use of (hydroxy)chloroquine is likely to have a detrimental effect on the spread of the virus. This case emphasizes that more needs to be learned about the role of antibodies in protecting against severe acute respiratory syndrome coronavirus 2 (re)infection and the role of (hydroxy)chloroquine on humoral immunity.
Collapse
Affiliation(s)
- Astrid Muyldermans
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Tony Wawina-Bokalanga
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Tine Anthierens
- Department of Emergency Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Olivier Goldberg
- Department of Emergency Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Magali Bartiaux
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre (CHUSP), Brussels, Belgium
| | - Oriane Soetens
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Sigi Van den Wijngaert
- Department of Microbiology, Laboratoire Hospitalier Universitaire Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| |
Collapse
|
9
|
Besaratinia A, Caliri AW, Tommasi S. Hydroxychloroquine induces oxidative DNA damage and mutation in mammalian cells. DNA Repair (Amst) 2021; 106:103180. [PMID: 34298488 PMCID: PMC8435022 DOI: 10.1016/j.dnarep.2021.103180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Since the early stages of the pandemic, hydroxychloroquine (HCQ), a widely used drug with good safety profile in clinic, has come to the forefront of research on drug repurposing for COVID-19 treatment/prevention. Despite the decades-long use of HCQ in the treatment of diseases, such as malaria and autoimmune disorders, the exact mechanisms of action of this drug are only beginning to be understood. To date, no data are available on the genotoxic potential of HCQ in vitro or in vivo. The present study is the first investigation of the DNA damaging- and mutagenic effects of HCQ in mammalian cells in vitro, at concentrations that are comparable to clinically achievable doses in patient populations. We demonstrate significant induction of a representative oxidative DNA damage (8-oxodG) in primary mouse embryonic fibroblasts (MEFs) treated with HCQ at 5 and 25 μM concentrations (P = 0.020 and P = 0.029, respectively), as determined by enzyme-linked immunosorbent assay. Furthermore, we show significant mutagenicity of HCQ, manifest as 2.2- and 1.8-fold increases in relative cII mutant frequency in primary and spontaneously immortalized Big Blue® MEFs, respectively, treated with 25 μM dose of this drug (P = 0.005 and P = 0.012, respectively). The observed genotoxic effects of HCQ in vitro, achievable at clinically relevant doses, are novel and important, and may have significant implications for safety monitoring in patient populations. Given the substantial number of the world's population receiving HCQ for the treatment of various chronic diseases or in the context of clinical trials for COVID-19, our findings warrant further investigations into the biological consequences of therapeutic/preventive use of this drug.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| | - Andrew W Caliri
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| | - Stella Tommasi
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| |
Collapse
|
10
|
The Multifaceted Role of Flavonoids in Cancer Therapy: Leveraging Autophagy with a Double-Edged Sword. Antioxidants (Basel) 2021; 10:antiox10071138. [PMID: 34356371 PMCID: PMC8301186 DOI: 10.3390/antiox10071138] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Flavonoids are considered as pleiotropic, safe, and readily obtainable molecules. A large number of recent studies have proposed that flavonoids have potential in the treatment of tumors by the modulation of autophagy. In many cases, flavonoids suppress cancer by stimulating excessive autophagy or impairing autophagy flux especially in apoptosis-resistant cancer cells. However, the anti-cancer activity of flavonoids may be attenuated due to the simultaneous induction of protective autophagy. Notably, flavonoids-triggered protective autophagy is becoming a trend for preventing cancer in the clinical setting or for protecting patients from conventional therapeutic side effects in normal tissues. In this review, focusing on the underlying autophagic mechanisms of flavonoids, we hope to provide a new perspective for clinical application of flavonoids in cancer therapy. In addition, we highlight new research ideas for the development of new dosage forms of flavonoids to improve their various pharmacological effects, establishing flavonoids as ideal candidates for cancer prevention and therapy in the clinic.
Collapse
|
11
|
An X, Duan L, Zhang YH, Jin D, Zhao S, Zhou RR, Duan Y, Lian F, Tong X. The three syndromes and six Chinese patent medicine study during the recovery phase of COVID-19. Chin Med 2021; 16:44. [PMID: 34099015 PMCID: PMC8182732 DOI: 10.1186/s13020-021-00454-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), first broke out in Wuhan, China, in 2019. SARS-CoV-2 develops many types of mutations (such as B.1.1.7), making diagnosis and treatment challenging. Although we now have a preliminary understanding of COVID-19, including pathological changes, clinical manifestations, and treatment measures, we also face new difficulties. The biggest problem is that most COVID-19 patients might face sequelae (e.g., fatigue, sleep disturbance, pulmonary fibrosis) during the recovery phase. We aimed to test six Chinese patent medicines to treat three major abnormal symptoms in COVID-19 patients during the recovery phase, including cardiopulmonary function, sleep disturbance, and digestive function. We launched the "three syndromes and six Chinese patent medicines" randomized, double-blind, placebo-controlled, multicenter clinical trial on April 10, 2020. The results showed that Jinshuibao tablets and Shengmaiyin oral liquid significantly improved the cardiopulmonary function of recovering COVID-19 patients. Shumian capsules, but not Xiaoyao capsules, significantly improved patients' sleep disorders. This might be because the indication of Xiaoyao capsules is liver qi stagnation rather than psychological or emotional problems. Xiangsha Liujun pills and Ludangshen oral liquid significantly improved digestive function. Our research provides a guideline for treating COVID-19 sequelae in patients during the recovery period based on high-quality evidence.
Collapse
Affiliation(s)
- Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yue Hong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Rong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingying Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
12
|
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021; 93:e13043. [PMID: 33783027 PMCID: PMC8250184 DOI: 10.1111/sji.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Alexis Hipólito García
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Dolores Moreno
- Chair of General Pathology and PathophysiologyFaculty of MedicineCentral University of VenezuelaCaracasVenezuela
| | - Marián Hajduch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| |
Collapse
|