1
|
Wang MY, Mo XY, Yi MX, Lu HY. Visualization of the relationship between metabolism and lung diseases from the perspective of bibliometric analysis: research trends and future prospects. Front Med (Lausanne) 2024; 11:1443926. [PMID: 39664315 PMCID: PMC11631585 DOI: 10.3389/fmed.2024.1443926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Background Extensive research has examined the role of metabolism in lung disease development, yet a comprehensive literature review remains absent despite numerous publications. Objective This study aims to visualize and assess the advancements in research on metabolism and its role in lung diseases. Methods Publications from January 1, 1991, to April 30, 2024, related to lung diseases and metabolism were sourced from the Web of Science Core Collection and analyzed using CiteSpace 6.2.R4, VOSviewer 1.6.19, Bibliometrix, R Studio, and various online tools. Results A total of 1,542 studies were collected and processed through these platforms for literature analysis and data visualization. The analysis revealed a sharp increase in annual publications on metabolism and lung diseases, with the United States and China emerging as leading contributors. Current research trends highlight a shift toward investigating metabolic reprogramming of immune cells in the context of lung diseases. Moreover, genes such as TNF, DIF, AKT1, INS, IL-6, CXCL8, IL-1β, TP53, NF-κB1, MTOR, IFNG, TGF-β1, HIF1α, VEGFA, IL-10, NFE2L2, PPARG, AKT, CRP, STAT3, and CD4 have received significant attention in this research domain. Employing a bibliometric approach, this study offers a comprehensive and objective examination of the knowledge landscape, shedding light on the evolving trends in this field. The findings serve as a valuable resource for researchers, offering a clearer perspective on the advancements in metabolism-related lung disease studies.
Collapse
Affiliation(s)
| | | | | | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Guo Y, Chen J, Zhang Z, Liu C, Li J, Liu Y. Analysis of blood metabolite characteristics at birth in preterm infants with bronchopulmonary dysplasia: an observational cohort study. Front Pediatr 2024; 12:1474381. [PMID: 39544337 PMCID: PMC11560417 DOI: 10.3389/fped.2024.1474381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Background To analyze the characteristics of blood metabolites within 24 h after birth in preterm infants with bronchopulmonary dysplasia (BPD) and to identify biomarkers for predicting the occurrence of BPD. Methods Dried blood spots (DBS) were collected at birth from preterm infants with gestational age (GA) of less than 32 weeks in the cohort. The infants were divided into the BPD group and non-BPD group based on whether they eventually developed BPD. Dried blood spot filter papers were prepared from venous blood collected within the first 24 h of life. Metabolites were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and analyzed using the R software package. Results DBS samples from 140 infants with the GA < 32 weeks were used in the study, with 4 infants who died being excluded. Among the remaining 136 preterm infants, 38 developed BPD and 98 did not. To control for GA differences, we conducted a subgroup analysis. In the GA 24+4-27+6 weeks subgroup, we observed a significant decrease in histidine levels and the ornithine/citrulline ratio in the BPD group. Additionally, the ratios of acylcarnitines C3/C0 and C5/C0 were also significantly reduced. Conclusions Metabolic markers in DBS within 24 h after birth are promising for predicting the occurrence of BPD in preterm infants with GA < 28 weeks. Clinical Trial Registration [https://www.chictr.org.cn/], identifier [ChiCTR2100048293, ChiCTR2400081615].
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Liu
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Ahmed S, Odumade OA, van Zalm P, Fatou B, Hansen R, Martin CR, Angelidou A, Steen H. Proteomics-Based Mapping of Bronchopulmonary Dysplasia-Associated Changes in Noninvasively Accessible Oral Secretions. J Pediatr 2024; 270:113774. [PMID: 37839510 PMCID: PMC11014893 DOI: 10.1016/j.jpeds.2023.113774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To determine if oral secretions (OS) can be used as a noninvasively collected body fluid, in lieu of tracheal aspirates (TA), to track respiratory status and predict bronchopulmonary dysplasia (BPD) development in infants born <32 weeks. STUDY DESIGN This was a retrospective, single center cohort study that included data and convenience samples from week-of-life (WoL) 3 from 2 independent preterm infant cohorts. Using previously banked samples, we applied our sample-sparing, high-throughput proteomics technology to compare OS and TA proteomes in infants born <32 weeks admitted to the Neonatal Intensive Care Unit (NICU) (Cohort 1; n = 23 infants). In a separate similar cohort, we mapped the BPD-associated changes in the OS proteome (Cohort 2; n = 17 infants including 8 with BPD). RESULTS In samples collected during the first month of life, we identified 607 proteins unique to OS, 327 proteins unique to TA, and 687 overlapping proteins belonging to pathways involved in immune effector processes, neutrophil degranulation, leukocyte mediated immunity, and metabolic processes. Furthermore, we identified 37 OS proteins that showed significantly differential abundance between BPD cases and controls: 13 were associated with metabolic and immune dysregulation, 10 of which (eg, SERPINC1, CSTA, BPI) have been linked to BPD or other prematurity-related lung disease based on blood or TA investigations, but not OS. CONCLUSIONS OS are a noninvasive, easily accessible alternative to TA and amenable to high-throughput proteomic analysis in preterm newborns. OS samples hold promise to yield actionable biomarkers of BPD development, particularly for prospective categorization and timely tailored treatment of at-risk infants with novel therapies.
Collapse
Affiliation(s)
- Saima Ahmed
- Department of Pathology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Oludare A Odumade
- Harvard Medical School, Boston, MA; Division of Neonatology, Boston Children's Hospital and Harvard Medical School, Boston, MA; Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Patrick van Zalm
- Department of Pathology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rachel Hansen
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Asimenia Angelidou
- Harvard Medical School, Boston, MA; Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
4
|
Hou W, Yu B, Li Y, Yan X, Su Q, Fang X, Zhou X, Yu Z. PC (16:0/14:0) ameliorates hyperoxia-induced bronchopulmonary dysplasia by upregulating claudin-1 and promoting alveolar type II cell repair. Int J Biochem Cell Biol 2024; 172:106587. [PMID: 38740281 DOI: 10.1016/j.biocel.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant challenge in neonatal care, the pathogenesis of which potentially involves altered lipid metabolism. Given the critical role of lipids in lung development and the injury response, we hypothesized that specific lipid species could serve as therapeutic agents in BPD. This study aimed to investigate the role of the lipid Phosphatidylcholine (PC) (16:0/14:0) in modulating BPD pathology and to elucidate its underlying mechanisms of action. Our approach integrated in vitro and in vivo methodologies to assess the effects of PC (16:0/14:0) on the histopathology, cellular proliferation, apoptosis, and molecular markers in lung tissue. In a hyperoxia-induced BPD rat model, we observed a reduction in alveolar number and an enlargement in alveolar size, which were ameliorated by PC (16:0/14:0) treatment. Correspondingly, in BPD cell models, PC (16:0/14:0) intervention led to increased cell viability, enhanced proliferation, reduced apoptosis, and elevated surfactant protein C (SPC) expression. RNA sequencing revealed significant gene expression differences between BPD and PC (16:0/14:0) treated groups, with a particular focus on Cldn1 (encoding claudin 1), which was significantly enriched in our analysis. Our findings suggest that PC (16:0/14:0) might protect against hyperoxia-induced alveolar type II cell damage by upregulating CLDN1 expression, potentially serving as a novel therapeutic target for BPD. This study not only advances our understanding of the role of lipids in BPD pathogenesis, but also highlights the significance of PC (16:0/14:0) in the prevention and treatment of BPD, offering new avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Weiwei Hou
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu 210008, China; Division of Neonatology, Department of Pediatrics, Northern Jiangsu People's Hospital afiliated to Yangzhou University, 98 West Nantong Road, Yangzhou, Jiangsu 225001, China
| | - Boshi Yu
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China.
| | - Yubai Li
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xudong Yan
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Qian Su
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xiaoyan Fang
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xiaoguang Zhou
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu 210008, China.
| | - Zhangbin Yu
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
5
|
Liu C, Fu C, Sun Y, You Y, Wang T, Zhang Y, Xia H, Wang X. Itaconic acid regulation of TFEB-mediated autophagy flux alleviates hyperoxia-induced bronchopulmonary dysplasia. Redox Biol 2024; 72:103115. [PMID: 38554522 PMCID: PMC10998238 DOI: 10.1016/j.redox.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Changchang Fu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China; Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yazhou Sun
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - You You
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Tengfei Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Hongping Xia
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
6
|
Fang C, Tu H, Li R, Bi D, Shu G. Bronchopulmonary dysplasia: analysis and validation of ferroptosis-related diagnostic biomarkers and immune cell infiltration features. Pediatr Res 2024:10.1038/s41390-024-03249-6. [PMID: 38760473 DOI: 10.1038/s41390-024-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Early and precise diagnosis of bronchopulmonary dysplasia (BPD) is essential to improve the prognosis of preterm infants with BPD. Studying ferroptosis-related genes for diagnostic markers of BPD was the objective of this study. METHODS Using the GEO database and the FerrDb database, we obtained the GSE32472 dataset and screened the ferroptosis-related differentially expressed mRNAs (FRDE-mRNAs). By using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), possible biological functions and pathways were identified for FRDE-mRNAs. Three machine learning algorithms (LASSO, SVM-RFE, Random Forest) were used to recognize hub genes, as well as CIBERSORT for exploring the immune landscape of BPD and controls. Functional predictions for hub genes were made using single-gene gene set enrichment analysis (GSEA). RESULTS Twenty three FRDE-mRNAs were obtained and were mainly involved in autophagy, fatty acid metabolism and ferroptosis. The four hub genes (LPIN1, ACADSB, WIPI1 and SLC7A11) screened were utilized to construct a diagnostic nomogram. The receiver operating characteristic (ROC) curves and calibration curves demonstrateld that the nomogram exhibited good predictive performance. Eight types of immune cell markers differed significantly between BPD and controls. CONCLUSION We developed a diagnostic model for BPD, which could facilitate the early diagnosis and timely intervention of BPD. IMPACT The role of ferroptosis in bronchopulmonary dysplasia is rarely reported. The ferroptosis-related genes (LPIN1, ACADSB, WIPI1 and SLC7A11) we identified could serve as early diagnostic biomarkers for BPD. Immune cell infiltration features in BPD and signaling pathways associated with marker genes give new insight into the disease process and provide a basis for further research.
Collapse
Affiliation(s)
| | - Haixia Tu
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Rong Li
- Dalian Medical University, Dalian, China
| | - Dengqin Bi
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Guihua Shu
- School of Medicine, Yangzhou University, Yangzhou, China.
- Department of Neonatology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Xu HN, Gonzalves D, Hoffman JH, Baur JA, Li LZ, Jensen EA. Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples. Antioxidants (Basel) 2024; 13:546. [PMID: 38790651 PMCID: PMC11117937 DOI: 10.3390/antiox13050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Jonathan H. Hoffman
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Joseph A. Baur
- Department of Physiology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Erik A. Jensen
- Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
8
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
9
|
Li L, Xu S, Li M, Yin X, Xi H, Yang P, Ma L, Zhang L, Li X. Combined gestational age and serum fucose for early prediction of risk for bronchopulmonary dysplasia in premature infants. BMC Pediatr 2024; 24:107. [PMID: 38347448 PMCID: PMC10860215 DOI: 10.1186/s12887-024-04556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates. MATERIALS AND METHODS The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosaccharides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrating clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC). RESULTS Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild (48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides (Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentrations of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age and Fuc-D, with an AUC of 0.96. CONCLUSION A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely intervention and improved neonatal outcomes.
Collapse
Affiliation(s)
- Liangliang Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Shimin Xu
- Division of Neonatology, Beijing jingdu Children's Hospital, Beijing, China
| | - Miaomiao Li
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xiangyun Yin
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Hongmin Xi
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Ping Yang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lili Ma
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lijuan Zhang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Xianghong Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| |
Collapse
|
10
|
Zhao WL, Xu D, Wang JS. Torachrysone-8-O-β-d-glucoside mediates anti-inflammatory effects by blocking aldose reductase-catalyzed metabolism of lipid peroxidation products. Biochem Pharmacol 2023; 218:115931. [PMID: 37981172 DOI: 10.1016/j.bcp.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Aldose reductase (AR) is an important enzyme involved in the reduction of various aldehyde and carbonyl compounds, including the highly reactive and toxic 4-hydroxynonenal (4-HNE), which has been linked to the progression of various pathologies such as atherosclerosis, hyperglycemia, inflammation, and tumors. AR inhibitors have potential therapeutic benefits for these diseases by reducing lipid peroxidation and mitigating the harmful effects of reactive aldehydes. In this study, we found that torachrysone-8-O-β-d-glucoside (TG), a natural product isolated from Polygonum multiflorum Thunb., functions as an effective inhibitor of AR, exhibiting potent effects in clearing reactive aldehydes and reducing inflammation. TG up-regulated the mRNA levels of several antioxidant factors downstream of NRF2, especially glutathione S-transferase (GST), which is significantly increased, thus detoxifying 4-HNE by facilitating the conjugation of 4-HNE to glutathione, forming glutathione-4-hydroxynonenal (GS-HNE). By employing a combination of molecular docking, cellular thermal shift assay, and enzyme activity experiments, we demonstrated that TG exhibited strong binding affinity with AR and inhibited its activity and blocked the conversion of GS-HNE to glutathionyl-1,4-dihydroxynonene (GS-DHN), thereby preventing the formation of protein adducts and inducing severe cellular damage. This study provides novel insights into the anti-inflammatory mechanisms of AR inhibitors and offers potential avenues for developing therapeutic strategies for AR-related pathologies. Our findings suggest that TG, as an AR inhibitor, may hold promise as a therapeutic agent for treating conditions characterized by excessive lipid peroxidation and inflammation. Further investigations are needed to fully explore the clinical potential of TG and evaluate its efficacy in the treatment and management of these complex diseases.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
11
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Feng DD, Chen JH, Chen YF, Cao Q, Li BJ, Chen XQ, Jin R, Zhou GP. MALAT1 binds to miR-188-3p to regulate ALOX5 activity in the lung inflammatory response of neonatal bronchopulmonary dysplasia. Mol Immunol 2023; 160:67-79. [PMID: 37385102 DOI: 10.1016/j.molimm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) causes high morbidity and mortality in infants, but no effective preventive or therapeutic agents have been developed to combat BPD. In this study, we assessed the expression of MALAT1 and ALOX5 in peripheral blood mononuclear cells from BPD neonates, hyperoxia-induced rat models and lung epithelial cell lines. Interestingly, we found upregulated expression of MALAT1 and ALOX5 in the experimental groups, along with upregulated expression of proinflammatory cytokines. According to bioinformatics prediction, MALAT1 and ALOX5 simultaneously bind to miR-188-3p, which was downregulated in the experimental groups above. Silencing MALAT1 or ALOX5 and overexpressing miR-188-3p inhibited apoptosis and promoted the proliferation of hyperoxia-treated A549 cells. Suppressing MALAT1 or overexpressing miR-188-3p increased the expression levels of miR-188-3p but decreased the expression levels of ALOX5. Moreover, RNA immunoprecipitation (RIP) and luciferase assays showed that MALAT1 directly targeted miR-188-3p to regulate ALOX5 expression in BPD neonates. Collectively, our study demonstrates that MALAT1 regulates ALOX5 expression by binding to miR-188-3p, providing novel insights into potential therapeutics for BPD treatment.
Collapse
Affiliation(s)
- Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Fei Chen
- Department of Pediatrics, Yancheng Maternal and Child Health Care Hospital, Yancheng 224000, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Bing-Jie Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
13
|
Yao D, Zhao J, Zhang Q, Wang T, Ni M, Qi S, Shen Q, Li W, Li B, Ding X, Liu Z. Aberrant methylation of Serpine1 mediates lung injury in neonatal mice prenatally exposed to intrauterine inflammation. Cell Biosci 2022; 12:164. [PMID: 36183130 PMCID: PMC9526974 DOI: 10.1186/s13578-022-00901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
Background Intrauterine inflammation (IUI) alters epigenetic modifications in offspring, leading to lung injury. However, the epigenetic mechanism underlying IUI-induced lung injury remains uncertain. In the present study, we aim to investigate the effect of IUI on lung development, and to identify the key molecule involved in this process and its epigenetic regulatory mechanism. Results Serpine1 was upregulated in the lung tissue of neonatal mice with IUI. Intranasal delivery of Serpine1 siRNA markedly reversed IUI-induced lung injury. Serpine1 overexpression substantially promoted cell senescence of both human and murine lung epithelial cells, reflected by decreased cell proliferation and increased senescence-associated β-galactosidase activity, G0/G1 cell fraction, senescence marker, and oxidative and DNA damage marker expression. IUI decreased the methylation level of the Serpine1 promoter, and methylation of the promoter led to transcriptional repression of Serpine1. Furthermore, IUI promoted the expression of Tet1 potentially through TNF-α, while Tet1 facilitated the demethylation of Serpine1 promoter. DNA pull-down and ChIP assays revealed that the Serpine1 promoter was regulated by Rela and Hdac2. DNA demethylation increased the recruitment of Rela to the Serpine1 promoter and induced the release of Hdac2. Conclusion Increased Serpine1 expression mediated by DNA demethylation causes lung injury in neonatal mice with IUI. Therefore, therapeutic interventions targeting Serpine1 may effectively prevent IUI-induced lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00901-8.
Collapse
Affiliation(s)
- Dongting Yao
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China ,grid.411480.80000 0004 1799 1816Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiuru Zhao
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Zhang
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Wang
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Ni
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Sudong Qi
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Qianwen Shen
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Baihe Li
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xiya Ding
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Liu
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Estelle B. Gauda,
| |
Collapse
|