1
|
D'Amato A, Iacopetta D, Ceramella J, Troiano R, Mariconda A, Catalano A, Marra M, Saturnino C, Rosano C, Sinicropi MS, Longo P. Design, synthesis and biological evaluation of multitarget hybrid molecules containing NHC-Au(I) complexes and carbazole moieties. Eur J Med Chem 2024; 277:116757. [PMID: 39142149 DOI: 10.1016/j.ejmech.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
N-heterocyclic carbenes (NHCs) represent suitable ligands for rapid and efficient drug design, because they offer the advantage of being easily chemically modified and can bind several substituents, including transition metals as, for instance, gold derivatives. Gold-NHC complexes possess various biological activities and were demonstrated good candidates as anticancer drugs. Besides, carbazole derivatives are characterized by various pharmacological properties, such as anticancer, antibacterial, anti-inflammatory, and anti-psychotropic. Amongst the latter, N-thioalkyl carbazoles were proved to inhibit cancer cells damaging the nuclear DNA, through the inhibition of human topoisomerases. Herein, we report the design, synthesis and biological evaluation of nine new hybrid molecules in which NHC-Au(I) complexes and N-alkylthiolated carbazoles are linked together, in order to obtain novel biological multitarget agents. We demonstrated that the lead hybrid complexes possess anticancer, anti-inflammatory and antioxidant properties, with a high potential as useful tools for treating distinct aspects of several diseases, amongst them cancer.
Collapse
Affiliation(s)
- A D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - D Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - J Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - R Troiano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - A Mariconda
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - A Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy.
| | - M Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - C Saturnino
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, I-85100, Potenza, Italy
| | - C Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - M S Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - P Longo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| |
Collapse
|
2
|
Paduch R, Klatka M, Pieniądz P, Wertel I, Pawłowska A, Klatka J. Reciprocal Interactions of Human Monocytes and Cancer Cells in Co-Cultures In Vitro. Curr Issues Mol Biol 2024; 46:6836-6852. [PMID: 39057050 PMCID: PMC11276568 DOI: 10.3390/cimb46070408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) includes immune and stromal cells and noncellular extracellular matrix (ECM) components. Tumor-associated macrophages (TAMs) are the most important immune cells in TME and are crucial for carcinomas' progression. The purpose was to analyze direct and indirect interactions in co-culture of tumor cells with monocytes/macrophages and, additionally, to indicate which interactions are more important for cancer development. Cytokines, reactive oxygen species, nitric oxide level, tumor cell cycle and changes in tumor cell morphology after human tumor cells (Hep-2 and RK33 cell lines) with human monocyte/macrophage (THP-1 cell line) interactions were tested. Morphology and cytoskeleton organization of tumor cells did not change after co-culture with macrophages. In co-culture of tumor cells with human monocyte, changes in the percentage of tumor cells in cell cycle phases was observed. No significant changes in reactive oxygen species (ROS) were found in the co-culture as compared to the tumor cell mono-culture. Monocytes produced about three times higher ROS than tumor cells. In co-cultures, a lower nitric oxide (NOx) level was found as compared to the sum of the production by both mono-cultures. Co-culture conditions limited the production of cytokines (IL-4, IL-10 and IL-13) as compared to the sum of their level in mono-cultures. In conclusion, macrophages influence tumor cell growth and functions. Mutual (direct and paracrine) interactions between tumor cells and macrophages changed cytokine production and tumor cell cycle profile. The data obtained may allow us to initially indicate which kind of interactions may have a greater impact on cancer development processes.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
- Department of General and Paediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Maria Klatka
- Department of Paediatric Endocrinology and Diabetology, Medical University, Gębali 1, 20-093 Lublin, Poland;
| | - Paulina Pieniądz
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (I.W.); (A.P.)
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (I.W.); (A.P.)
| | - Janusz Klatka
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
3
|
Pradhan P, Vijayan V, Liu B, Martinez-Delgado B, Matamala N, Nikolin C, Greite R, DeLuca DS, Janciauskiene S, Motterlini R, Foresti R, Immenschuh S. Distinct metabolic responses to heme in inflammatory human and mouse macrophages - Role of nitric oxide. Redox Biol 2024; 73:103191. [PMID: 38762951 PMCID: PMC11130737 DOI: 10.1016/j.redox.2024.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024] Open
Abstract
Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.
Collapse
Affiliation(s)
- Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Vijith Vijayan
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Robert Greite
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - David S. DeLuca
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
5
|
Kuschman HP, Palczewski MB, Hoffman B, Menhart M, Wang X, Glynn S, Islam ABMMK, Benevolenskaya EV, Thomas DD. Nitric oxide inhibits FTO demethylase activity to regulate N 6-methyladenosine mRNA methylation. Redox Biol 2023; 67:102928. [PMID: 37866163 PMCID: PMC10623363 DOI: 10.1016/j.redox.2023.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. Demethylation of m6A on mRNA is catalyzed by the enzyme fat mass and obesity-associated protein (FTO), a member of the nonheme Fe(II) and 2-oxoglutarate (2-OG)-dependent family of dioxygenases. FTO activity and m6A-mRNA are dysregulated in multiple diseases including cancers, yet endogenous signaling molecules that modulate FTO activity have not been identified. Here we show that nitric oxide (NO) is a potent inhibitor of FTO demethylase activity by directly binding to the catalytic iron center, which causes global m6A hypermethylation of mRNA in cells and results in gene-specific enrichment of m6A on mRNA of NO-regulated transcripts. Both cell culture and tumor xenograft models demonstrated that endogenous NO synthesis can regulate m6A-mRNA levels and transcriptional changes of m6A-associated genes. These results build a direct link between NO and m6A-mRNA regulation and reveal a novel signaling mechanism of NO as an endogenous regulator of the epitranscriptome.
Collapse
Affiliation(s)
| | - Marianne B Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Brian Hoffman
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry, USA
| | - Mary Menhart
- College of Medicine, Departments of Pharmacology and Bioengineering, USA
| | - Xiaowei Wang
- College of Medicine, Departments of Pharmacology and Bioengineering, USA
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology, USA
| | | | | | - Douglas D Thomas
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, USA.
| |
Collapse
|
6
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
7
|
Pan Z, Zhao Y, Zhou S, Wang J, Fan F. CD44 Drives M1 Macrophage Polarization in Diabetic Retinopathy. Curr Eye Res 2023:1-11. [PMID: 37191152 DOI: 10.1080/02713683.2023.2210273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
PURPOSE Diabetic retinopathy is a typical complication of diabetes, which can facilitate the risk of blindness in severe cases. We sought to determine the function of CD44 in inflammatory responses of human retinal microvascular endothelial cells (HRMECs) and macrophage polarization during diabetic retinopathy (DR). METHODS The hub genes were tested based on two datasets from the Gene Expression Omnibus database. Gene Ontology and pathway enrichment analysis was conducted on the base of differentially expressed genes (DEGs). The infiltration score and infiltration of the immune cells were assessed, and the link between key genes and macrophages was analyzed. The role of CD44 in HRMECs and macrophage polarization was determined by quantitative reverse transcription polymerase chain reaction, western blot, cell counting kit-8, Enzyme-linked immunosorbent assay, flow cytometry, and immunofluorescence. RESULTS DEGs were enriched in several pathways linked to DR, such as cellular response to retinoic acid, retinol metabolic process, retina homeostasis, PI3K-AKT signaling pathway, and leukocyte transendothelial migration. A total of 144 DEGs were identified by up-regulation both in GSE102485 and GSE160306. Moreover, the infiltration of macrophages was greater in the DR group than that in the control group. We highlighted an obvious increase in the expression of CD44 and CD86 in patients with DR, and distinct positive associations were found between levels of macrophages and levels of CD44 and CD86. Furthermore, CD44 expression was substantially increased in HRMECs under high glucose (HG) conditions and CD44 knockdown markedly inhibited HG-induced inflammatory responses of HRMECs. HG-induced HRMECs remarkably influenced M1 polarization of macrophages, but CD44 knockdown significantly nullified this effect. CONCLUSIONS CD44 influenced the advancement of DR via meditating M1 polarization of macrophages. Our findings could enhance the understanding of the mechanism of DR, which might offer a therapeutic target for DR patients.
Collapse
Affiliation(s)
- Zhujuan Pan
- Ophthalmology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoxin Zhao
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaobo Zhou
- Ophthalmology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Ophthalmology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - FeiHong Fan
- Ophthalmology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Pan H, Miao X, Deng J, Pan C, Cheng X, Wang X. Bimetallic Metal-Organic Framework for Mitigating Aseptic Osteolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4935-4946. [PMID: 36657969 DOI: 10.1021/acsami.2c19449] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The disability rate of joint diseases can be reduced by the use of artificial joints, but joint loosening at a late state limits the lifespan and surgical efficacy of the joints. Wear particles can be recognized by macrophages and induce cells to produce reactive oxygen species (ROS) and inflammatory factors, causing persistent inflammation and decreased osteogenic activity, which ultimately leads to loosening of joint prostheses. Here, the platinum (Pt) nanozymes with excellent ROS scavenging and anti-inflammatory capabilities were encapsulated in zinc imidazolium zeolite framework-8 (ZIF-8), and then the osteogenic active element lanthanum (La) was introduced through ion exchange to finally construct a bimetallic metal-organic framework (Pt@ZIF-8@La). In vitro and in vivo experiments demonstrated that this multifunctional nanoplatform possessed the functions of efficient scavenging of ROS, immune regulation, and promotion of osteogenic differentiation. Meanwhile, the mechanism is explored that Pt@ZIF-8@La can also promote osteogenic mineralization by upregulating the ratio of the osteoprotegerin (OPG)/receptor activator of the NF-κB ligand (RANKL), which can achieve a synergistic therapeutic effect of immunomodulation and osteogenesis, thereby realizing the purpose of relieving aseptic osteolysis.
Collapse
Affiliation(s)
- Huajun Pan
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Xinxin Miao
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Jianjian Deng
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Chongzhi Pan
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Xigao Cheng
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| |
Collapse
|
9
|
Dubey S, Ghosh S, Goswami D, Ghatak D, De R. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol 2023; 208:115369. [PMID: 36481347 DOI: 10.1016/j.bcp.2022.115369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are specialized immune cells, which have the capacity to phagocytize and destroy the target cells, including tumor cells. Some macrophages, however on their way to devour the cancer cells undergo a change due to a complex set of signaling pathways. They are induced to change into a polarized state known as M2. The M2 macrophages help in metastasis, tumor suppression, and angiogenesis. The macrophage which gets associated with this TME, are referred to as tumor-associated macrophages (TAMs). TAMS undergo a metabolic reprogramming toward oxidative metabolism for bioenergetic purposes (OXPHOS), fatty acid oxidation (FAO), decreased glycolysis, decreased metabolism via the PPP, and upregulation of arginase 1 (ARG1) which triggers immunosuppressive pro-tumor signaling in the tumor microenvironment (TME) in which mitochondria plays an instrumental role. Reports have suggested that a complex series of interactions and exchange of materials, such as cytokines, metabolic intermediates and sometimes even transfer of mitochondria take place between TAMS and other TME components most importantly cancer cells that reprogram their metabolism to encourage cell growth, division, epithelial to mesenchymal transition, that ultimately play an important role in tumor progression. This review will try to focus on the crosstalk between the TAMs with several other components of TME, what instrumental role mitochondria play in that and also try to explore some of the therapeutic options available in cancer patients.
Collapse
Affiliation(s)
- Srijan Dubey
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debosmita Goswami
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India.
| |
Collapse
|
10
|
The Nitric Oxide Donor [Zn(PipNONO)Cl] Exhibits Antitumor Activity through Inhibition of Epithelial and Endothelial Mesenchymal Transitions. Cancers (Basel) 2022; 14:cancers14174240. [PMID: 36077778 PMCID: PMC9454450 DOI: 10.3390/cancers14174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Nitric oxide (NO) plays a critical pathophysiological role in cancer by modulating several processes, such as angiogenesis, tumor growth, and metastatic potential. The aim of this study was to characterize the antitumor effects of a novel NO donor, [Zn(PipNONO)Cl], on the processes of epithelial– and endothelial–mesenchymal transitions (EMT and EndMT), known to actively participate in cancer progression. Two tumor cells lines were used in this study: human lung cancer cells (A549) and melanoma cells (A375), alone and co-cultured with human endothelial cells. Our results demonstrate that both tumor and endothelial cells were targets of NO action, which impaired EMT and EndMT functional and molecular features. Further studies are needed to finalize the therapeutic use of the novel NO donor. Abstract Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial–mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-β1 (TGF-β1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-β1, and restoration of the epithelial marker E-cadherin, reduced by TGF-β1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial–mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes.
Collapse
|