1
|
Yang J, Ren B, Cai H, Xiong W, Feng J, Fan Q, Li Z, Huang L, Yan C, Li Y, Chen C, Shen Z. Cyclic catalysis of intratumor Fe 3+/2+ initiated by a hollow mesoporous iron sesquioxide nanoparticle for ferroptosis therapy of large tumors. Biomaterials 2025; 313:122793. [PMID: 39226655 DOI: 10.1016/j.biomaterials.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.
Collapse
Affiliation(s)
- Jing Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Bin Ren
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Haobin Cai
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Qingdeng Fan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Lin Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yan Li
- Institute of Medical Instruments, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China.
| | - Chaomin Chen
- Institute of Medical Instruments, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China.
| | - Zheyu Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Ren W, Li W, Cha X, Wang S, Cai B, Wang T, Li F, Li T, Xie Y, Xu Z, Wang Z, Liu H, Yu Y. Single-cell transcriptomic atlas of taste papilla aging. Aging Cell 2024; 23:e14308. [PMID: 39169434 PMCID: PMC11634696 DOI: 10.1111/acel.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Taste perception is one of the important senses in mammals. Taste dysfunction causes significant inconvenience in daily life, leading to subhealth and even life-threatening condition. Aging is a major cause to taste dysfunction, while the underlying feature related to gustatory aging is still not known. Using single-cell RNA Sequencing, differentially expressed genes between aged and young taste papillae are identified, including upregulated mt-Nd4l and Xist, as well as downregulated Hsp90ab1 and Tmem59. In the Tmem59-/- circumvallate papillae (CVP), taste mature cell generation is impaired by reduction in the numbers of PLCβ2+ and Car4+ cells, as well as decreases in expression levels of taste transduction genes. Tmem59-/- mice showed deficits in sensitivities to tastants. Through screening by GenAge and DisGeNET databases, aging-dependent genes and oral disease-associated genes are identified in taste papillae. In the CVP, aging promotes intercellular communication reciprocally between (cycling) basal cell and mature taste cell by upregulated Crlf1/Lifr and Adam15/Itga5 signaling. By transcriptional network analysis, ribosome proteins, Anxa1, Prdx5, and Hmgb1/2 are identified as transcriptional hubs in the aged taste papillae. Chronological aging-associated transcriptional changes throughout taste cell maturation are revealed. Aged taste papillae contain more Muc5b+ cells that are not localized in gustatory gland. Collectively, this study shows molecular and cellular features associated with taste papilla aging.
Collapse
Affiliation(s)
- Wenwen Ren
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
- Olfactory Disorder Diagnosis and Treatment CenterEye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Xudong Cha
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Shenglei Wang
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Boyu Cai
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Tianyu Wang
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Fengzhen Li
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Tengfei Li
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Yingqi Xie
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Zengyi Xu
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Zhe Wang
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Huanhai Liu
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
- Olfactory Disorder Diagnosis and Treatment CenterEye & ENT Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Zhang J, Zhu H, Li L, Gao Y, Yu B, Ma G, Jin X, Sun Y. New mechanism of LncRNA: In addition to act as a ceRNA. Noncoding RNA Res 2024; 9:1050-1060. [PMID: 39022688 PMCID: PMC11254507 DOI: 10.1016/j.ncrna.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) are a class of RNA molecules with nucleic acid lengths ranging from 200 bp to 100 kb that cannot code for proteins, which are diverse and widely expressed in both animals and plants. Scholars have found that lncRNAs can regulate human physiological processes at the gene and protein levels, mainly through the regulation of epigenetic, transcriptional and post-transcriptional levels of genes and proteins, as well as in the immune response by regulating the expression of immune cells and inflammatory factors, and thus participate in the occurrence and development of a variety of diseases. From the downstream targets of lncRNAs, we summarize the new research progress of lncRNA mechanisms other than miRNA sponges in recent years, aiming to provide new ideas and directions for the study of lncRNA mechanisms.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Chen Y, Shen YQ. Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal 2024; 125:111502. [PMID: 39521028 DOI: 10.1016/j.cellsig.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) originate from diverse sources and regulate multiple signaling pathways within the cellular environment. Their generation is intricately controlled, and disruptions in their signaling or atypical levels can precipitate pathological conditions. Epigenetics, the examination of heritable alterations in gene expression independent of changes in the genetic code, has been implicated in the pathogenesis of various diseases through aberrant epigenetic modifications. The significant contribution of epigenetic modifications to disease progression underscores their potential as crucial therapeutic targets for a wide array of medical conditions. This study begins by providing an overview of ROS and epigenetics, followed by a discussion on the mechanisms of epigenetic modifications such as DNA methylation, histone modification, and RNA modification-mediated regulation. Subsequently, a detailed examination of the interaction between ROS and epigenetic modifications is presented, offering new perspectives and avenues for exploring the mechanisms underlying specific epigenetic diseases and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yutong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
5
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
6
|
Ma T, Wang M, Wang S, Hu H, Zhang X, Wang H, Wang G, Jin Y. BMSC derived EVs inhibit colorectal Cancer progression by transporting MAGI2-AS3 or something similar. Cell Signal 2024; 121:111235. [PMID: 38806109 DOI: 10.1016/j.cellsig.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Meng Wang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital (Affiliated Cancer Hospital of the Chinese Academy of Sciences), Hangzhou 310000, China
| | - Song Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hufei Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| | - Yinghu Jin
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
7
|
Fan SB, Xie XF, Wei W, Hua T. Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:379-393. [PMID: 39583315 PMCID: PMC11584837 DOI: 10.1007/s43657-024-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/26/2024]
Abstract
In gynecological oncology, ovarian cancer (OC) remains the most lethal, highlighting its significance in public health. Our research focused on the role of long non-coding RNA (lncRNA) in OC, particularly senescence-related lncRNAs (SnRlncRNAs), crucial for OC prognosis. Utilizing data from the genotype-tissue expression (GTEx) and cancer genome Atlas (TCGA), SnRlncRNAs were discerned and subsequently, a risk signature was sculpted using co-expression and differential expression analyses, Cox regression, and least absolute shrinkage and selection operator (LASSO). This signature's robustness was validated through time-dependent receiver operating characteristics (ROC), and multivariate Cox regression, with further validation in the international cancer genome consortium (ICGC). Gene set enrichment analyses (GSEA) unveiled pathways intertwined with risk groups. The ROC, alongside the nomogram and calibration outcomes, attested to the model's robust predictive accuracy. Of particular significance, our model has demonstrated superiority over several commonly utilized clinical indicators, such as stage and grade. Patients in the low-risk group demonstrated greater immune infiltration and varied drug sensitivities compared to other groups. Moreover, consensus clustering classified OC patients into four distinct groups based on the expression of 17 SnRlncRNAs, showing diverse survival rates. In conclusion, these findings underscored the robustness and reliability of our model and highlighted its potential for facilitating improved decision-making in the context of risk assessment, and demonstrated that these markers potentially served as robust, efficacious biomarkers and prognostic tools, offering insights into predicting OC response to anticancer therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00163-z.
Collapse
Affiliation(s)
- Shao-Bei Fan
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| | - Wang Wei
- Department of Obstetrics and Gynaecology, Hebei Medical University, Second Hospital, 215 Heping Road, Shijiazhuang, Hebei 050000 People’s Republic of China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| |
Collapse
|
8
|
Zou J, Zheng Z, Ye W, Jin M, Yang P, Little PJ, Wang J, Liu Z. Targeting the smooth muscle cell KEAP1-Nrf2-STING axis with pterostilbene attenuates abdominal aortic aneurysm. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155696. [PMID: 38763007 DOI: 10.1016/j.phymed.2024.155696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a life-threatening aortic disease, and to date, there are currently no effective pharmacological treatments to address this condition. Activation of cytosolic DNA sensing adaptor stimulator of interferon genes (STING) signaling is a crucial mechanism in AAA formation. PURPOSE This study investigated pterostilbene (Pt), a naturally occurring polyphenol and resveratrol analogue, as a STING inhibitor for preventing AAA. METHODS We evaluated the effect of Pt on AAA formation in angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mice. We used histological analysis, MMP activity measurement, western blot, and immunohistochemistry to detect AAA formation and development. We applied RNA sequencing, molecular docking, cellular thermal shift assay (CETSA) and functional studies to dissect the molecular mechanism of Pt-regulating KEAP1-Nrf2-STING signaling. We conditionally knocked down Nrf2 in vascular smooth muscle cells (VSMCs) in vivo to investigate its role in Pt-mediated protective effects on AAA. RESULTS Pt effectively blocked the formation of AAA in AngII-infused ApoE-/- mice. Whole transcriptome sequencing analysis revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) and STING pathway in VSMCs were linked to the anti-AAA effects of pterostilbene. Mechanistically, Pt upregulated Nrf2 target genes (e.g., HO-1 and NQO1) through activation of the KEAP1/Nrf2 signaling, which restricted the immunostimulatory axis of mtDNA-STING-TBK1-NF-κB, thereby alleviating VSMC inflammation and preserving the VSMC contractile phenotype. Subsequently, molecular docking and CETSA revealed a binding mode between Pt and KEAP1/Nrf2. Intriguingly, the inhibitory effect of Pt on STING signaling and the protective role of Pt in AAA were largely abrogated by VSMC-specific Nrf2 knockdown in mice. CONCLUSION Collectively, naturally derived Pt shows promising efficacy for the treatment of AAA by targeting the KEAP1-Nrf2-STING axis in VSMCs.
Collapse
Affiliation(s)
- Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Dong Z, Hu B, Wang S, Wang M, Sun S, Liu X, Li D, Wu D. LncRNA MAGI2-AS3 promotes fracture healing through downregulation of miR-223-3p. J Orthop Surg Res 2024; 19:370. [PMID: 38907263 PMCID: PMC11193218 DOI: 10.1186/s13018-024-04850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are recognized as a pivotal element in the processes of fracture healing and the osteogenic differentiation of stem cells. This study investigated the molecular mechanism and regulatory significance of lncRNA MAGI2-AS3 (MAGI2-AS3) in fracture healing. METHODS Serum levels of MAGI2-AS3 in patients with normal and delayed fracture healing were verified by RT-qPCR assays. The predictive efficacy of MAGI2-AS3 for delayed fracture healing was analyzed by ROC curve. Osteogenic markers were quantified by RT-qPCR assays. MC3T3-E1 cell viability was detected using CCK-8 assay, and flow cytometry was utilized to measure cell apoptosis. The dual-luciferase reporter gene assay was used to determine the targeted binding between MAGI2-AS3 and miR-223-3p. RESULTS Serum MAGI2-AS3 expression was decreased in patients with delayed fracture healing compared with patients with normal healing. Elevated MAGI2-AS3 resulted in an upregulation of the proliferative capacity of MC3T3-E1 cells and a decrease in mortality, along with increased levels of both osteogenic markers. However, after transfection silencing MAGI2-AS3, the trend was reversed. Additionally, miR-223-3p was the downstream target of MAGI2-AS3 and was controlled by MAGI2-AS3. miR-223-3p mimic reversed the promoting effects of MAGI2-AS3 overexpression on osteogenic marker levels and cell growth, and induced cell apoptosis. CONCLUSION The upregulation of MAGI2-AS3 may expedite the healing of fracture patients by targeting miR-223-3p, offering a novel biomarker for diagnosing patients with delayed healing.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, 710000, China
| | - Bingbing Hu
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shantao Wang
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou City, Weifang, 262500, China.
| | - Mingwei Wang
- Department of Pediatric, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Shengliang Sun
- Hand, Foot and Ankle Surgery, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Xinsheng Liu
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou City, Weifang, 262500, China
| | - Danzhi Li
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou City, Weifang, 262500, China
| | - Dengjiang Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China.
| |
Collapse
|
10
|
Gan S, Zhou S, Ma J, Xiong M, Xiong W, Fan X, Liu K, Gui Y, Chen B, Zhang B, Wang X, Wang F, Li Z, Yan W, Ma M, Yuan S. BAG5 regulates HSPA8-mediated protein folding required for sperm head-tail coupling apparatus assembly. EMBO Rep 2024; 25:2045-2070. [PMID: 38454159 PMCID: PMC11015022 DOI: 10.1038/s44319-024-00112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.
Collapse
Affiliation(s)
- Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jinzhe Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjing Xiong
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Beibei Zhang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhean Li
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA, 90502, USA
| | - Meisheng Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Yafeng F, Xinpeng S, Rong W, Guofeng C. Omilancor mitigates the senescence of nucleus pulposus cells induced by DDP through targeting MAP2K6. Aging (Albany NY) 2024; 16:5050-5064. [PMID: 38517363 PMCID: PMC11006466 DOI: 10.18632/aging.205588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.
Collapse
Affiliation(s)
- Fang Yafeng
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Shi Xinpeng
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Wei Rong
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Cui Guofeng
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| |
Collapse
|
12
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
13
|
Hu Y, Hu Y, Lu X, Luo H, Chen Z. LINC00839 in Human Disorders: Insights into its Regulatory Roles and Clinical Impact, with a Special Focus on Cancer. J Cancer 2024; 15:2179-2192. [PMID: 38495499 PMCID: PMC10937278 DOI: 10.7150/jca.93820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
LINC00839 has captured significant attention within a spectrum of human disorders, including acute lung injury, osteoarthritis, and childhood obesity. Notably, aberrant expression patterns of LINC00839 have been observed across diverse cancer tissues and cell lines. LINC00839 emerges as an oncogenic factor in tumorigenesis and exerts a positive influence on tumor-associated behaviors. Its therapeutic potential for various cancers is underscored by its modulatory impact on pivotal signaling pathways, such as PI3K/AKT, OXPHOS, and Wnt/β-catenin. Additionally, LINC00839's role in reducing sensitivity to drug and radiotherapy interventions presents opportunities for targeted intervention. Furthermore, elevated LINC00839 expression indicates advanced clinicopathological features and foretells unfavorable prognoses, as validated by publications and comprehensive analyses of tumor types using TCGA datasets. This review elucidates the multiple regulatory mechanisms and functional implications of LINC00839 in various diseases, especially malignancies, emphasizing its potential as a predictive biomarker and therapeutic target across multiple disease domains in humans.
Collapse
Affiliation(s)
- Yingqiu Hu
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yushan Hu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Xuan Lu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Ziwen Chen
- Department of Gastrointestinal Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
14
|
Tavares e Silva J, Pessoa J, Nóbrega-Pereira S, Bernardes de Jesus B. The Impact of Long Noncoding RNAs in Tissue Regeneration and Senescence. Cells 2024; 13:119. [PMID: 38247811 PMCID: PMC10814083 DOI: 10.3390/cells13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Overcoming senescence with tissue engineering has a promising impact on multiple diseases. Here, we provide an overview of recent studies in which cellular senescence was inhibited through the up/downregulation of specific lncRNAs. This approach prevented senescence in the bones, joints, nervous system, heart, and blood vessels, with a potential impact on regeneration and the prevention of osteoarthritis and osteoporosis, as well as neurodegenerative and cardiovascular diseases. Senescence of the skin and liver could also be prevented through the regulation of cellular levels of specific lncRNAs, resulting in the rejuvenation of cells from these organs and their potential protection from disease. From these exciting achievements, which support tissue regeneration and are not restricted to stem cells, we propose lncRNA regulation through RNA or gene therapies as a prospective preventive and therapeutic approach against aging and multiple aging-related diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (J.T.e.S.); (J.P.); (S.N.-P.)
| |
Collapse
|
15
|
Wei X, Zheng Z, Liu M, Yang Z, Xie E, Lin J, Gao Y, Tan R, She Z, Ma J, Yang L. Enzyme-responsive nanospheres target senescent cells for diabetic wound healing by employing chemodynamic therapy. Acta Biomater 2023; 172:407-422. [PMID: 37848101 DOI: 10.1016/j.actbio.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Evidence indicates that prolonged low-level inflammation and elevated-glucose-induced oxidative stress in diabetic wounds can accelerate senescence. The accumulation of senescent cells, in turn, inhibits cellular proliferation and migration, aggravating the inflammatory response and oxidative stress, ultimately impeding wound healing. In this study, we exploited the heightened lysosomal β-galactosidase activity detected in senescent cells to develop an innovative drug delivery system by encapsulating Fe3O4 with galactose-modified poly (lactic-co-glycolic acid) (PLGA) (F@GP). We found that F@GP can selectively release Fe3O4 into senescent cells, inducing ferroptosis via the Fenton reaction in the presence of elevated intracellular H2O2 levels. This showed that F@GP administration can serve as a chemodynamic therapy to eliminate senescent cells and promote cell proliferation. Furthermore, the F@GP drug delivery system gradually released iron ions into the diabetic wound tissues, enhancing the attenuation of cellular senescence, stimulating cell proliferation, promoting re-epithelialization, and accelerating the healing of diabetic wounds in mice. Our groundbreaking approach unveiled the specific targeting of senescence by F@GP, demonstrating its profound effect on promoting the healing of diabetic wounds. This discovery underscores the therapeutic potential of F@GP in effectively addressing challenging cases of wound repair. STATEMENT OF SIGNIFICANCE: The development of galactose-modified PLGA nanoparticles loaded with Fe3O4 (F@GP) represents a significant therapeutic approach for the treatment of diabetic wounds. These nanoparticles exhibit remarkable potential in selectively targeting senescent cells, which accumulate in diabetic wound tissue, through an enzyme-responsive mechanism. By employing chemodynamic therapy, F@GP nanoparticles effectively eliminate senescent cells by releasing iron ions that mediate the Fenton reaction. This targeted approach holds great promise for promoting diabetic wound healing by selectively eliminating senescent cells, which play a crucial role in impairing the wound healing process. The innovative utilization of F@GP nanoparticles as a therapeutic intervention offers a novel and potentially transformative strategy for addressing the challenges associated with diabetic wound healing.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Zhangfeifan Yang
- Department of Statistics, University of California Los Angeles, Los Angeles, USA
| | - Erlian Xie
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Rongwei Tan
- GuangDong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518107, China
| | - Zhending She
- GuangDong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518107, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Chen S, Ma J, Xiao Y, Zhou D, He P, Chen Y, Zheng X, Lin H, Qiu F, Yuan Y, Zhong J, Li X, Pan X, Fang Z, Wang C. RNA Interference against ATP as a Gene Therapy Approach for Prostate Cancer. Mol Pharm 2023; 20:5214-5225. [PMID: 37733628 DOI: 10.1021/acs.molpharmaceut.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Chemotherapeutic agents targeting energy metabolism have not achieved satisfactory results in different types of tumors. Herein, we developed an RNA interference (RNAi) method against adenosine triphosphate (ATP) by constructing an interfering plasmid-expressing ATP-binding RNA aptamer, which notably inhibited the growth of prostate cancer cells through diminishing the availability of cytoplasmic ATP and impairing the homeostasis of energy metabolism, and both glycolysis and oxidative phosphorylation were suppressed after RNAi treatment. Further identifying the mechanism underlying the effects of ATP aptamer, we surprisingly found that it markedly reduced the activity of membrane ionic channels and membrane potential which led to the dysfunction of mitochondria, such as the decrease of mitochondrial number, reduction in the respiration rate, and decline of mitochondrial membrane potential and ATP production. Meanwhile, the shortage of ATP impeded the formation of lamellipodia that are essential for the movement of cells, consequently resulting in a significant reduction of cell migration. Both the downregulation of the phosphorylation of AMP-activated protein kinase (AMPK) and endoplasmic reticulum kinase (ERK) and diminishing of lamellipodium formation led to cell apoptosis as well as the inhibition of angiogenesis and invasion. In conclusion, as the first RNAi modality targeting the blocking of ATP consumption, the present method can disturb the respiratory chain and ATP pool, which provides a novel regime for tumor therapies..
Collapse
Affiliation(s)
- Shuangya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Dongyan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Ping He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xiaolu Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
- Pharmaceutical Department, Jinhua Central Hospital, Jinhua, Zhejiang 321000, China
| | - Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Feng Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yuying Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jiaben Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Zhiyuan Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| |
Collapse
|
17
|
Deng W, Ai J, Zhang W, Zhou Z, Li M, Yan L, Zhang L, Huang Z, Wu Z, Ai J, Jiang H. Arginine methylation of HSPA8 by PRMT9 inhibits ferroptosis to accelerate hepatitis B virus-associated hepatocellular carcinoma progression. J Transl Med 2023; 21:625. [PMID: 37715221 PMCID: PMC10503172 DOI: 10.1186/s12967-023-04408-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The hepatitis B virus X (HBx) protein is an established cause of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC). Whether arginine methylation regulates ferroptosis involved in HBx-induced HCC progression has not been reported. This study aimed to explore whether HBx-regulated protein arginine methyltransferase 9 (PRMT9) mediates the involvement of ferroptosis in the development of HCC. METHODS AND RESULTS HBx inhibited ferroptosis through promoting PRMT9 expression in HCC cells. PRMT9 suppressed ferroptosis to accelerate HCC progression in vivo. PRMT9 targeted HSPA8 and enhanced arginine methylation of HSPA8 at R76 and R100 to regulate ferroptosis in HCC. HSPA8 overexpression altered the transcriptome profile of HepG2 cells, in particular, ferroptosis and immune-related pathways were significantly enriched by differentially expressed genes, including CD44. HSPA8 overexpression up-regulated CD44 expression and knockdown of CD44 significantly reversed the inhibition of ferroptosis caused by PRMT9 overexpression. CONCLUSIONS In conclusion, HBx/PRMT9/HSPA8/CD44 axis is a vital signal pathway regulating ferroptosis in HCC cells. This study provides new opportunities and targets for the treatment of HBV-induced HCC.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Wanlin Zhang
- Department of Clinical Laboratory, Ningbo Yinzhou No. 2 Hospital Ningbo Urology and Nephtology Hospital, Ningbo, 315100, Zhejiang, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Muqi Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Likun Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Lidong Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Zongjing Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Ziyi Wu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China.
| | - Hai Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang City, 330000, Jiangxi, China.
| |
Collapse
|
18
|
Zhang H, Guo Q, Feng G, Shen X, Feng X, Guo Y, Wang S, Zhong X. Lnc-PXMP4-2-4 alleviates myocardial cell damage by activating the JAK2/STAT3 signaling pathway. Heliyon 2023; 9:e18649. [PMID: 37560637 PMCID: PMC10407674 DOI: 10.1016/j.heliyon.2023.e18649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of long non-coding lnc-PXMP4-2-4 on myocardial cell damage caused by acute myocardial infarction (AMI). METHODS Peripheral blood mononuclear cells (PBMC) were collected from 24 patients with AMI on the day of admission, the first day after percutaneous coronary intervention (PCI) and the third day after surgery, and 24 patients with clinical control group. Real-time quantitative PCR(QRT-PCR) was used to detect the expression of related genes. Then in human cardiomyocytes (AC16), Cell Counting Kit-8 (CCK-8) was used to determine cell viability, lactate dehydrogenase release assay (LDH) was used to determine the release of lactate dehydrogenase, PCR was used to detect the expression of genes, cell death was detected by flow cytometry, and the expression of related proteins was measured by Western blot. The effect of lnc-PXMP4-2-4 was further studied by silencing and overexpressing lnc-PXMP4-2-4. RESULTS Compared with clinical control group, the expression of lnc-PXMP4-2-4 in PBMC of AMI patients was significantly higher than it. Compared with pre-operation, the expression of lnc-PXMP4-2-4 was significantly up-regulated on day 1 after PCI, and recovered to pre-operation level on day 3 after surgery. In AC16 cells, lnc-PXMP4-2-4 inhibited the proliferation of AC16, promoted the release of LDH and increased cell death, aggravated the cardiomyocyte injury caused by H2O2, and inhibited the expression of JAK2 and STAT3 mRNA and protein. The up-regulation of lnc-PXMP-4-2-4 had the opposite effect. In addition, the inhibition of the signal pathway by JAK2/STAT3 pathway inhibitor AG490 partially weakened the enhanced viability of AC16 cells, decreased LDH release and apoptosis induced by lnc-PXMP4-2-4 overexpression, increased Bcl-2 expression and down-regulated Bax expression. CONCLUSION Therefore, we conclude that lnc-PXMP4-2-4 protects cardiomyocytes from injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Qinlin Guo
- Department of Endocrine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Guiju Feng
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xinxin Feng
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, People's Republic of China
| | - Yi Guo
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Shouyan Wang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| |
Collapse
|
19
|
Shen P, Gao J, Huang S, You C, Wang H, Chen P, Yao T, Gao T, Zhou B, Shen S, Zhao X, Ma J. LncRNA AC006064.4-201 serves as a novel molecular marker in alleviating cartilage senescence and protecting against osteoarthritis by destabilizing CDKN1B mRNA via interacting with PTBP1. Biomark Res 2023; 11:39. [PMID: 37055817 PMCID: PMC10099822 DOI: 10.1186/s40364-023-00477-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent age-related disease in the world. Chondrocytes undergo an age-dependent decline in their proliferation and synthetic capacity, which is the main cause of OA development. However, the intrinsic mechanism of chondrocyte senescence is still unclear. This study aimed to investigate the role of a novel long non-coding RNA (lncRNA), AC006064.4-201 in the regulation of chondrocyte senescence and OA progression and to elucidate the underlying molecular mechanisms. METHODS The function of AC006064.4-201 in chondrocytes was assessed using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) and β-galactosidase staining. The interaction between AC006064.4-201 and polypyrimidine tract-binding protein 1 (PTBP1), as well as cyclin-dependent kinase inhibitor 1B (CDKN1B), was evaluated using RPD-MS, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays. Mice models were used to investigate the role of AC006064.4-201 in post-traumatic and age-related OA in vivo. RESULTS Our research revealed that AC006064.4-201 was downregulated in senescent and degenerated human cartilage, which could alleviate senescence and regulate metabolism in chondrocytes. Mechanically, AC006064.4-201 directly interacts with PTBP1 and blocks the binding between PTBP1 and CDKN1B mRNA, thereby destabilizing CDKN1B mRNA and decreasing the translation of CDKN1B. The in vivo experiments were consistent with the results of the in vitro experiments. CONCLUSIONS The AC006064.4-201/PTBP1/CDKN1B axis plays an important role in OA development and provides new molecular markers for the early diagnosis and treatment of OA in the future. Schematic diagram of AC006064.4-201 mechanism. A schematic diagram of the mechanism underlying the effect of AC006064.4-201.
Collapse
Affiliation(s)
- Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shaohan Huang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Chenan You
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Tianyou Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Bohao Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
- Department of Endocrinology, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
- Department of Endocrinology, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
- Department of Endocrinology, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
20
|
Huang X, Su Z, Li J, He J, Zhao N, Nie L, Guan B, Huang Q, Zhao H, Lu GD, Nong Q. Downregulation of LncRNA GCLC-1 Promotes Microcystin-LR-Induced Malignant Transformation of Human Liver Cells by Regulating GCLC Expression. TOXICS 2023; 11:162. [PMID: 36851037 PMCID: PMC9960881 DOI: 10.3390/toxics11020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Microcystin-LR (MCLR) is an aquatic toxin, which could lead to the development of hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are considered important regulatory elements in the occurrence and development of cancer. However, the roles and mechanisms of lncRNAs during the process of HCC, induced by MCLR, remain elusive. Here, we identified a novel lncRNA, namely lnc-GCLC-1 (lncGCLC), which is in close proximity to the chromosome location of glutamate-cysteine ligase catalytic subunit (GCLC). We then investigated the role of lncGCLC in MCLR-induced malignant transformation of WRL68, a human hepatic cell line. During MCLR-induced cell transformation, the expression of lncGCLC and GCLC decreased continuously, accompanied with a consistently high expression of miR-122-5p. Knockdown of lncGCLC promoted cell proliferation, migration and invasion, but reduced cell apoptosis. A xenograft nude mouse model demonstrated that knockdown of lncGCLC promoted tumor growth. Furthermore, knockdown of lncGCLC significantly upregulated miR-122-5p expression, suppressed GCLC expression and GSH levels, and enhanced oxidative DNA damages. More importantly, the expression of lncGCLC in human HCC tissues was significantly downregulated in the high-microcystin exposure group, and positively associated with GCLC level in HCC tissues. Together, these findings suggest that lncGCLC plays an anti-oncogenic role in MCLR-induced malignant transformation by regulating GCLC expression.
Collapse
Affiliation(s)
- Xinglei Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zhaohui Su
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jiangheng Li
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junquan He
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Na Zhao
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Liyun Nie
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Bin Guan
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiuyue Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qingqing Nong
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|