1
|
Zhang SY, Yang N, Hao PH, Wen R, Zhang TN. Targeting sirtuins in neurological disorders: A comprehensive review. Int J Biol Macromol 2025; 292:139258. [PMID: 39736297 DOI: 10.1016/j.ijbiomac.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function. This review summarizes the latest research advancements in the role of the SIRT family in neurological diseases, mainly including neurodegenerative diseases, ischemia-related diseases, bleeding-related diseases, nervous system injury and other nervous system diseases, emphasizing their critical functions and associated signaling pathways, (e.g., AMPK/SIRT1/PGC-1α, AMPK/SIRT1/IL-1β/NF-κB, STAT2-SIRT4-mTOR, SIRT3/FOXO3α, and other signaling pathways in disease progression, particularly their protective roles in neurodegenerative diseases, ischemic injuries, and neural damage. Additionally, this review discusses progress in clinical studies targeting SIRT-specific small-molecule agonists and inhibitors. Further research on SIRTs may provide new insights into potential therapeutic strategies for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Wang C, Zhang J, Chen W, Gao L, He J, Xia Y. Exosomal lncRNA RMRP-shuttled by Olfactory Mucosa-Mesenchymal Stem Cells Suppresses Microglial Pyroptosis to Improve Spinal Cord Injury via EIF4A3/SIRT1. Mol Neurobiol 2025:10.1007/s12035-025-04756-1. [PMID: 39982689 DOI: 10.1007/s12035-025-04756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Microglial pyroptosis significantly influences the pathological process and functional recovery after spinal cord injury (SCI). Olfactory mucosal mesenchymal stem cells (OM-MSCs) have shown remarkable therapeutic effects in SCI due to their neural substitution potential and paracrine mechanism. Therefore, the purpose of this study was to investigate the function and mechanism of OM-MSCs-derived exosomes (Exo) in regulating microglial pyroptosis after SCI. OM-MSCs and their secreted Exo were extracted and identified correspondingly. Microglia cells (HMC3) were stimulated by lipopolysaccharide (LPS) and co-cultured with Exo; the cell viability and pyroptosis of HMC3 cells were validated by CCK-8 and flow cytometry analysis. The inflammatory cytokines and pyroptosis-related proteins were measured by ELISA and western blot. Molecular interactions were verified by RNA immunoprecipitation and RNA pull-down. The SCI mouse model was constructed and administered with Exo, and then the histopathological features were detected using H&E, Nissl staining, and BMS score. lncRNA RMRP was enriched in OM-MSCs-Exo and downregulated in LPS-induced HMC3 cells. OM-MSCs-Exo administration markedly elevated lncRNA RMRP expression and repressed microglial pyroptosis in LPS-induced HMC3 cells, while these effects were diminished when lncRNA RMRP was depleted in OM-MSCs-Exo. Mechanistically, lncRNA RMRP maintained SIRT1 mRNA stability by recruiting EIF4A3. Overexpression of SIRT1 could rescue lncRNA RMRP knockdown-mediated microglia pyroptosis. In vivo data further supported that OM-MSCs-Exo administration relieves pyroptosis and nerve damage after SCI by carrying lncRNA RMRP. Our data suggested that exosomal lncRNA RMRP mitigated microglia pyroptosis and promoted motor function recovery after SCI by regulating the EIF4A3/SIRT1 axis.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Jiangshan Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Weiming Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Ling Gao
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China.
| |
Collapse
|
3
|
Li J, Cui S, Li Y, Zhang C, Chang C, Jian F. Sirtuin1 in Spinal Cord Injury: Regulatory Mechanisms, Microenvironment Remodeling and Therapeutic Potential. CNS Neurosci Ther 2025; 31:e70244. [PMID: 39915897 PMCID: PMC11802336 DOI: 10.1111/cns.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex central nervous system disorder characterized by multifaceted pathological processes, including inflammation, oxidative stress, programmed cell death, autophagy, and mitochondrial dysfunction. Sirtuin 1 (Sirt1), a critical NAD+-dependent deacetylase, has emerged as a promising therapeutic target for SCI repair due to its potential to protect neurons, regulate glial and vascular cells, and optimize the injury microenvironment. However, the regulatory roles of Sirt1 in SCI are complex and challenging, as its effects vary depending on activation timing, expression levels, and cell types. METHODS A systematic literature review was conducted using PubMed, Scopus, and Web of Science to identify studies investigating Sirt1 in SCI. Relevant publications were analyzed to synthesize current evidence on Sirt1's mechanisms, therapeutic effects, and challenges in SCI repair. RESULTS Sirt1 exerts broad regulatory effects across diverse pathological processes and cell types post-SCI. It promotes neuronal survival and axonal regeneration, modulates astrocytes and microglia to resolve inflammation, supports oligodendrocyte-mediated myelination, and enhances vascular endothelial function. Proper Sirt1 activation may mitigate secondary injury, whereas excessive or prolonged activation could impair inflammatory resolution or disrupt cellular homeostasis. This review highlights Sirt1 activation as potential therapies, but challenges include optimizing spatiotemporal activation and addressing dual roles in different cell types. CONCLUSION Targeting Sirt1 represents a viable strategy for SCI repair, given its multifaceted regulation of neuroprotection, immunomodulation, and tissue remodeling. However, translating these findings into therapies requires resolving critical issues such as cell type-specific delivery, precise activation timing, and dosage control. This review provides a theoretical foundation and practical insights for advancing Sirt1-based treatments for SCI.
Collapse
Affiliation(s)
- Jinze Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Shengyu Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yanqiu Li
- Center for Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Can Zhang
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chao Chang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
| | - Fengzeng Jian
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Wang Y, Li H, Huang X, Huang Y, Lv M, Tang H, Han X, Liu J, Liang Y, Zang G, Lu N, Zhang G. NAD+ Suppresses EV-D68 Infection by Enhancing Anti-Viral Effect of SIRT1. Viruses 2025; 17:175. [PMID: 40006932 PMCID: PMC11860866 DOI: 10.3390/v17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Enterovirus 68 (EV-D68) is a non-enveloped virus with a positive-sense single-stranded RNA genome that causes respiratory diseases and acute flaccid myelitis, posing significant threats to human health. However, an effective vaccine remains undeveloped. SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, plays a key role in cellular metabolism, but its interaction with NAD+ during viral infections is not well understood. In this study, through a metabolomics analysis, we demonstrate that EV-D68 infection influences cellular metabolism. Additionally, we show that NAD+ inhibits EV-D68 infection both in vivo and in vitro. EV-D68 reduces cellular NAD+ levels by regulating the expression of enzymes involved in NAD+ consumption and synthesis. Moreover, the infection increases the expression of sirtuin 1 (SIRT1), which inhibits EV-D68 replication in turn. Mechanistically, SIRT1 suppresses EV-D68 5'UTR-mediated translation, and the antiviral effect of SIRT1 on EV-D68 replication is enhanced by NAD+. Collectively, our findings highlight the critical role of NAD+ metabolism in EV-D68 infection and reveal the antiviral potential of SIRT1, providing valuable insights for the development of antiviral strategies.
Collapse
Affiliation(s)
- Yue Wang
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Haiyu Li
- Institute of Intelligent Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing 402760, China;
| | - Xia Huang
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Yan Huang
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Mingqi Lv
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Hong Tang
- Second Affiliated Hospital, Army Medical University, Chongqing 400037, China;
| | - Xinyue Han
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Juntong Liu
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Yan Liang
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Guangchao Zang
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Nan Lu
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| | - Guangyuan Zhang
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (X.H.); (Y.H.); (M.L.); (X.H.); (J.L.); (Y.L.); (G.Z.)
| |
Collapse
|
5
|
Jia CJ, Chen MN, Huang DD, Wu SF, Zeng CM, Liu ZQ, Wang MX, Huang YF, Yuan QJ, Zhang X. Edaravone promotes motoneuron survival and functional recovery after brachial plexus root avulsion and reimplantation in rats: Involvement of SIRT1/TFEB pathway. Int Immunopharmacol 2025; 145:113686. [PMID: 39642559 DOI: 10.1016/j.intimp.2024.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Brachial plexu root avulsion (BPRA) commonly causes extensive motoneuron death, motor axon degeneration and denervation of biceps, leading to devastating motor dysfunction in the upper limb. Edaravone (Eda) has been proven to exert anti-oxidative and neuroprotective effects on various neurological disorders. Herein, we aimed to investigate the efficacy profile and potential mechanisms of Eda on BPRA in vitro and in vivo models. METHODS Rats following BPRA and reimplantation surgery were intraperitoneally injected with Eda once daily. The motor function recovery of the affected forelimb was assessed by Terzis grooming test. Histological staining and transmission electron microscopy were performed to evaluate the morphological appearance of the spinal cord, musculocutaneous nerve, and biceps. Further in-depth studies to explore the underlying mechanisms of Eda were conducted using Western blotting, biochemical assays, and immunofluorescence in H2O2-induced NSC-34 cells. RESULTS Eda significantly accelerated motor function recovery, enhanced motoneuron survival, prevented motor axon descent, preserved myelin sheath integrity and attenuated muscle atrophy. Additionally, Eda treatment markedly suppressed oxidative stress-related indicators, downregulated apoptosis-related proteins, mitigated glial reactivity, and activated SIRT1 and TFEB. Notably, the neuroprotective effect of Eda was diminished by the SIRT1 inhibitor EX527 in H2O2-treated NSC-34 cells, suggesting that Eda regulated oxidative stress and apoptosis through SIRT1/TFEB-induced autophagy flux. CONCLUSIONS Eda enhanced motoneuron survival and axonal regeneration that promotes motor functional restoration by inhibiting oxidative stress and apoptosis via the SIRT1/TFEB-autophagy pathway. Thus, it may serve as a promising strategy in reimplantation surgery for the treatment of BPRA.
Collapse
Affiliation(s)
- Cai-Ju Jia
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Man-Ni Chen
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dou-Dou Huang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Shao-Feng Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Chun-Ming Zeng
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhe-Qi Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Meng-Xia Wang
- ShunDe Polytechnic College, School of Medicine & Health Care, FoShan, Guangdong, 528000, China.
| | - Yan-Feng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China.
| | - Xie Zhang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
6
|
Sun Z, Luan X, Sun Z, Li D, Hu H, Xue Q, Liu B, Yu Q, Wei G, Zhang X, Xi Y. Bioactive Peptide Hydrogel Scaffold with High Fluidity, Thermosensitivity, and Neurotropism in 3D Spatial Structure for Promoted Repair of Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406990. [PMID: 39513226 DOI: 10.1002/smll.202406990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Spinal cord injury (SCI) has been considered a clinically challenging disease that is characterized by local disturbance of the microenvironment, which inhibits post-injury neural regeneration. The simulation of a microenvironment conducive to the regeneration of spinal cord is beneficial for SCI repair. In this study, bioactive composite hydrogels are developed that mimic the regenerative microenvironment of spinal cord for enhanced SCI repair. The fabricated composite hydrogels (CRP) based on chitosan (CS), RADA16 nanofibers, and nerve-promoted peptide (PPFLMLLKGSTR) exhibit excellent injectability, superior biodegradability and biocompatibility. In addition, the CRP hydrogels can form quickly (a few minutes) by mixing three components at human body temperature, showing high potential as a biomimetic matrix for in situ repair of SCI. The in vitro studies demonstrate that the CRP hydrogels can not only promote the proliferation and migration of bone marrow mesenchymal stem cells but also induce the proliferation and differentiation of neural stem cells (NSCs) into neurons. Meanwhile, the hydrogels reveal the efficiency of protecting neurons and promoting axonal growth. Furthermore, the in vivo tests prove that the CRP hydrogels can reduce post-SCI inflammatory responses, inhibit reactive astrocyte over-proliferation, and promote the migration, proliferation, and differentiation of endogenous NSCs, which agree well with the in vitro results. The pre-clinical test demonstrates that the CRP hydrogels restore the motor function in completely transected spinal cord rats, and the SCI repair mechanism may involve the activation of the PI3K/AKT/mTOR pathway. It is believed that the strategies shown in this work will be valuable for the design and synthesis of novel hydrogels for biomedical and tissue engineering applications.
Collapse
Affiliation(s)
- Zhengang Sun
- Qingdao Huangdao Central Hospital, Qingdao, 266555, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- The Department of Plastic Surgery, The Second Hospital& Clinical Medical School, Lanzhou University, Lanzhou, 730030, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenjuan Sun
- The Sixth People's Hospital of Qingdao, Qingdao, 266000, P. R. China
| | - Dagang Li
- Qingdao Huangdao Central Hospital, Qingdao, 266555, P. R. China
| | - Huiqiang Hu
- Department of Orthopedics, Qilu Hospital of Shandong University, Qingdao, 266071, P. R. China
| | - Qingpei Xue
- Qingdao Huangdao Central Hospital, Qingdao, 266555, P. R. China
| | - Bo Liu
- The Department of Plastic Surgery, The Second Hospital& Clinical Medical School, Lanzhou University, Lanzhou, 730030, P. R. China
| | - Qianqian Yu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, The Second Hospital& Clinical Medical School, Lanzhou University, Lanzhou, 730030, P. R. China
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
7
|
Wei YF, Zhang HL, Li LZ, Lv Y, Li H, Li Z, Yu FL, Jiang T, Zhang TY, Xin F, Ma C, Ren YX. Sirt1 blocks nucleus pulposus and macrophages crosstalk by inhibiting RelA/Lipocalin 2 axis. J Orthop Translat 2025; 50:30-43. [PMID: 39758288 PMCID: PMC11699611 DOI: 10.1016/j.jot.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) stands as a primary pathophysiological driver of low back pain, yet no therapeutic intervention effectively arrests its progression. Evidence shows that certain Sirt1 agonists may confer protective effects on intervertebral discs, but the underlying mechanisms remain unclear. This study aims to delineate the interaction between Sirt1 and the inflammatory microenvironment, offering potential novel avenues for IVDD prevention and treatment. Methods In vitro IL-1β-induced nucleus pulposus cells (NPCs) degenerative model and in vivo a mouse annulus fibrosus needle puncture model in Sirt1 transgenic (Sirt1TG) and the same litter WT mice were used to investigate the role of Sirt1 in homeostasis and inflammation. Mechanistic insights were obtained through RNA sequencing, co-immunoprecipitation (Co-IP), luciferase assays, and chromatin immunoprecipitation-(ChIP)-PCR. A co-culture system of Raw264.7 and NPCs was employed to assess the involvement of Lipocalin 2. Results Our study demonstrated reduced Sirt1 expression in degenerating human nucleus pulposus (NP) tissue. Both in vitro and in vivo data revealed that NP-specific overexpression of Sirt1 inhibited extracellular matrix degradation and inflammation. Mechanistically, Sirt1 suppressed the acetylation of RelA/p65 at lysine 310 and phosphorylation at serine 536, with the C-terminus of Sirt1 and the RHD-NLS domain of RelA mediating to their interaction. Furthermore, NPCs-derived Lipocalin 2 was identified as a cytokine involved in macrophage chemotaxis and M1 polarization to exacerbate inflammation. Conclusion Our work revealed that Sirt1 negatively regulates Lipocalin 2, thereby ameliorating the inflammatory milieu and blocking NPCs and macrophages crosstalk. The Translational Potential of this Article This study illuminates the crucial role and molecular mechanisms of Sirt1 in regulating the NP microenvironment. These insights shed light on strategies for the prevention and treatment of IVDD-related herniation and low back pain. By pinpointing specific biological targets, the screening of smallmolecule compounds with significant clinical implications can be facilitated. This translational innovation promises to optimize cells communication within intervertebral disc microenvironment via localized drug delivery, potentially improving patient outcomes and satisfaction following spinal fusion or discectomy surgeries.
Collapse
Affiliation(s)
- Yi-Fan Wei
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - He-Long Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Ling-Zhi Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - You Lv
- Department of Orthopaedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang, 221000, China
| | - He Li
- Department of Sports Medicine, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang, 221000, China
| | - Zhi Li
- Department of Orthopaedics, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Rd, Nanjing, 210024, China
| | - Feng-Lei Yu
- Department of Trauma and Orthopaedics, The First People's Hospital of Kunshan, 566 East Qianjin Rd, Suzhou, 215000, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Tian-You Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Feng Xin
- Department of Orthopaedics, Xuzhou Cancer Hospital, 131 Huancheng Rd, Xuzhou, 221005, China
| | - Cheng Ma
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Yong-Xin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| |
Collapse
|
8
|
Zhang H, Tian Y, Ma S, Ji Y, Wang Z, Xiao P, Xu Y. Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials. Mol Neurobiol 2024; 61:10671-10683. [PMID: 38775879 DOI: 10.1007/s12035-024-04230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
Collapse
Affiliation(s)
- Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Yang H, Chen YX, Linghu KG, Ren PY, Yao YT, Jiang F, Wu GP, Chen TT, Ji YP, Tao L, Sun QY, Li Y, Shen XC. 1,8-Cineole alleviates Nrf2-mediated redox imbalance and mitochondrial dysfunction in diabetes mellitus by targeting Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156099. [PMID: 39437685 DOI: 10.1016/j.phymed.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin secretion caused by β cell dysfunction. 1,8-Cineole is a key bioactive compound in the essential oil extracted from Fructus Alpiniae Zerumbet, which possesses anti-inflammatory and antioxidant properties. Nevertheless, it remains elusive about the protective effect and precise mechanisms of 1,8-Cineole against the β cell deterioration in T2DM. PURPOSE To investigate the effect of 1,8-Cineole on β cell dysfunction in T2DM and the potential mechanism of its action. METHODS A mouse model of T2DM and a β cell model of high glucose induction were generated to analyze the pharmacological properties of 1,8-Cineole. Proteomic and network pharmacological analyses were conducted to identify the crucial pathways involved in T2DM. Resveratrol [a Sirtuin1 (Sirt1) agonist] and Sirt1 knockdown were used to ascertain the mechanism of 1,8-Cineole in T2DM. The binding affinity of 1,8-Cineole to Sirt1 was assessed with molecular docking, surface plasmon resonance, immunoprecipitation assay, and cellular thermal shift assay. RESULTS Firstly, dysregulated crucial pathways in T2DM were screened out, including redox imbalance and mitochondrial dysfunction. Subsequently, 1,8-Cineole was found to activate Sirt1 and nuclear factor E2-related factor 2 (Nrf2) to repress oxidative stress in both T2DM mice and high glucose-induced β cells, thereby relieving mitochondrial dysfunction and apoptosis. Furthermore, 1,8-Cineole specifically targeted Sirt1 and favored the direct interaction between Sirt1 and Nrf2, ultimately restoring β cell function. CONCLUSIONS Our findings provide the first evidence that 1,8-Cineole directly binds to Sirt1 and enhances its stability, therefore rectifying impaired oxidative homeostasis, and then suppressing mitochondrial dysfunction and apoptosis in T2DM, indicating that 1,8-Cineole may be a potential candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ke-Gang Linghu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Peng-Yan Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Feng Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Guo-Ping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ting-Ting Chen
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yun-Peng Ji
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qian-Yun Sun
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yue Li
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China.
| |
Collapse
|
10
|
Liu N, Li J, Dai H, Liang X, Fan H. Involvement of SIRT1-mediated cellular immune response in cancer. Biomed Pharmacother 2024; 180:117482. [PMID: 39321514 DOI: 10.1016/j.biopha.2024.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
The morbidity and mortality of cancer are rising rapidly worldwide and immunotherapy has become an effective means to curb the progress of cancer. Sirtuin-1(SIRT1) is a NAD+ -dependent deacetylase that plays a key role in cancer development and immune regulation through mediating a variety of signaling pathways. Targeting SIRT1 in immunotherapy could enhance or erod immune responses against cancer cells, while SIRT1 activator and inhibitors are being developed as potential antineoplastic agents with important implications in clinic. This review summarizes the impact of SIRT1 in different types of immune cells and mechanism of SIRT1-mediated immune responses in tumor progression as well as its therapeutic perspectives.
Collapse
Affiliation(s)
- Nan Liu
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jiafang Li
- Department of Dermatology, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hui Dai
- Department of Tumor and Blood Disease, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xinyue Liang
- Departments of Hematology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Hongqiong Fan
- Departments of Hematology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Lan Y, Li X, Liu B, Lu J, Zuo B, Wang Y, Cao S, Fu X, Yue Q, Luo X, Zhong X, Dong Y, Wang Z, Yang T, Xie X, Zeng T, Zhang M, Wang Y, Shen Y, Zuo H, Zhao Y, Zhang C, Guo H. Framework nucleic acid-based nanoparticles enhance temozolomide sensitivity in glioblastoma. Drug Resist Updat 2024; 76:101122. [PMID: 39079407 DOI: 10.1016/j.drup.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) is a crucial determinant of temozolomide (TMZ) sensitivity in patients with glioblastoma (GBM). The therapeutic potential of small interfering RNA (siRNA) targeting MGMT to enhance TMZ sensitivity has been hampered by serum nuclease degradation, off-target effects, poor accumulation at tumor sites, and low circulation in blood stream. In this study, we developed a framework nucleic acid-based nanoparticles (FNN), which is constructed from a six-helix DNA bundle, to encapsulate and protect siMGMT for improving TMZ sensitivity in GBM treatment. For better blood-brain barrier (BBB) penetration and GBM targeting, we conjugated Angiopep-2 (ANG) targeting modules to each end of the FNN. Nucleolin (NCL)-responsive locks were engineered along the sides of the six-helix DNA bundle, which safeguard siMGMT before tumor entry. Upon interaction with tumor-overexpressed NCL, these locks unlock, exposing siMGMT, this allows for effective suppression of MGMT, resulting in a significant improvement of TMZ therapeutic efficacy in GBM. This innovative strategy has the potential to transform the current treatment landscape for GBM.
Collapse
Affiliation(s)
- Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodie Li
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiankun Lu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boming Zuo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | | | - Xin Fu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qu Yue
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Luo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yaoyuan Dong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xinyun Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tianci Zeng
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Manqing Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuankai Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yixiong Shen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Chao Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
12
|
Sun J, Zheng Q, Wu K. IGFBP7 mediates oxLDL-induced human vascular endothelial cell injury by suppressing the expression of SIRT1. Heliyon 2024; 10:e35359. [PMID: 39170442 PMCID: PMC11336593 DOI: 10.1016/j.heliyon.2024.e35359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Endothelial cell injury plays an important role in initiating atherosclerotic lesion formation. Insulin-like growth factor binding protein 7 (IGFBP7) is known to modulate the behaviors of tumor-associated endothelial cells. This study was conducted to test whether IGFBP7 is involved in endothelial cell injury during atherosclerosis. Oxidized low-density lipoprotein (oxLDL) treatment was used to mimic atherosclerosis-related endothelial cell apoptosis and inflammation response. Small interfering RNA (siRNA) technology was employed to deplete IGFBP7 expression in human aortic endothelial cells (HAECs). HAECs were exposed to recombinant human IGFBP7 protein to evaluate the function of IGFBP7. Notably, IGFBP7 expression in HAECs was induced by oxLDL treatment. Knockdown of IGFBP7 or treatment with anti-IGFBP7 abolished oxLDL-induced apoptosis and inflammation in HAECs. Moreover, recombinant IGFBP7 (40 ng/mL but not 25 ng/mL) promoted apoptosis and inflammation in HAECs. IGFBP7 co-localized with CD93 on the surface of HAECs. A mechanistic investigation uncovered that IGFBP7 induced endothelial cell injury through interaction with CD93 and reduction of SIRT1 expression via an autocrine manner. Overexpression of SIRT1 rescued IGFBP7-induced phenotype in HAECs. Taken together, IGFBP7 is induced by oxLDL and mediates oxLDL-induced endothelial cell apoptosis and inflammation, likely through downregulation of SIRT1. These observations support a rationale to prevent atherosclerosis by targeting IGFBP7 activity.
Collapse
Affiliation(s)
- Jiaju Sun
- Department of Cardiology, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Qingyong Zheng
- Infectious Disease Laboratory, Wenzhou Sixth People's Hospital, Wenzhou, China
| | - Kaijia Wu
- Electrocardiogram Room, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Sun Y, Zhang J, Gu Y, Liu T, Chen L. Biomineralized MnO 2 Nanoparticle-Constituted Hydrogels Promote Spinal Cord Injury Repair by Modulating Redox Microenvironment and Inhibiting Ferroptosis. Pharmaceutics 2024; 16:1057. [PMID: 39204402 PMCID: PMC11359041 DOI: 10.3390/pharmaceutics16081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) is one of the most severe injuries, characterized by multiple positive feedback regulatory signaling networks formed by oxidative stress and inflammation in the injury microenvironment, leading to neuronal cell damage and even death. Here, astragaloside IV (AS), known for its regulatory role in ferroptosis, was encapsulated in the cavity of apoferritin (HFn) after an in situ biomineralization process involving MnO2, resulting in the synthesis of HFn@MnO2/AS nanoparticles. These nanoparticles were then dispersed in chitosan/polyvinyl alcohol/glutaraldehyde/sodium β-glycerophosphate (CGPG) hydrogels to form CGPG-HFn@MnO2/AS injectable thermosensitive hydrogels that can scavenge reactive oxygen species (ROS) in the microenvironment. Our findings indicated that the prepared CGPG-HFn@MnO2/AS hydrogel exhibited remarkable efficacy in scavenging ROS in vitro, effectively ameliorating the oxidative stress microenvironment post-SCI. Furthermore, it inhibited oxidative stress-induced ferroptosis in vitro and in vivo by regulating SIRT1 signaling, thereby promoting neuronal cell migration and repair. Hence, the developed hydrogel combining MnO2 and AS exhibited multifaceted abilities to modulate the pathological microenvironment, providing a promising therapeutic strategy for central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yuyu Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
- Department of Orthopedic, Nantong Third People’s Hospital of Nantong University and Affiliated Nantong Hospital 3 of Nantong University, 60 Qingnian Rd, Nantong 226001, China
| | - Jinlong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
- Department of Spine Surgery, Nantong City No.1 People’s Hospital and The Affiliated Hospital 2 of Nantong University, 666 Shengli Rd, Nantong 226014, China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
| |
Collapse
|
14
|
Rong Y, Wang J, Hu T, Shi Z, Lang C, Liu W, Cai W, Sun Y, Zhang F, Zhang W. Ginsenoside Rg1 Regulates Immune Microenvironment and Neurological Recovery After Spinal Cord Injury Through MYCBP2 Delivery via Neuronal Cell-Derived Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402114. [PMID: 38896802 PMCID: PMC11336912 DOI: 10.1002/advs.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) is a severe neurological condition that frequently leads to significant sensory, motor, and autonomic dysfunction. This study sought to delineate the potential mechanistic underpinnings of extracellular vesicles (EVs) derived from ginsenoside Rg1-pretreated neuronal cells (Rg1-EVs) in ameliorating SCI. These results demonstrated that treatment with Rg1-EVs substantially improved motor function in spinal cord-injured mice. Rg1-EVs enhance microglial polarization toward the M2 phenotype and repressed oxidative stress, thereby altering immune responses and decreasing inflammatory cytokine secretion. Moreover, Rg1-EVs substantially diminish reactive oxygen species accumulation and enhanced neural tissue repair by regulating mitochondrial function. Proteomic profiling highlighted a significant enrichment of MYCBP2 in Rg1-EVs, and functional assays confirmed that MYCBP2 knockdown counteracted the beneficial effects of Rg1-EVs in vitro and in vivo. Mechanistically, MYCBP2 is implicated in the ubiquitination and degradation of S100A9, thereby promoting microglial M2-phenotype polarization and reducing oxidative stress. Overall, these findings substantiated the pivotal role of Rg1-EVs in neuronal protection and functional recovery following SCI through MYCBP2-mediated ubiquitination of S100A9. This research offers novel mechanistic insights into therapeutic strategies against SCI and supports the clinical potential of Rg1-EVs.
Collapse
Affiliation(s)
- Yuluo Rong
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghai200444China
| | - Jiaxing Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Tao Hu
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Zhongming Shi
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Chuandong Lang
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Wei Liu
- Department of OrthopedicsSecond Affiliated Hospital of Naval Medical UniversityShanghai200003China
| | - Weihua Cai
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Yongjin Sun
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Feng Zhang
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Wenzhi Zhang
- Department of orthopaedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| |
Collapse
|
15
|
Liao SS, Zhang LL, Zhang YG, Luo J, Kadier T, Ding K, Chen R, Meng QT. Ghrelin alleviates intestinal ischemia-reperfusion injury by activating the GHSR-1α/Sirt1/FOXO1 pathway. FASEB J 2024; 38:e23681. [PMID: 38814725 DOI: 10.1096/fj.202302155rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 μg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.
Collapse
Affiliation(s)
- Shi-Shi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Le-le Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi-Guo Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Qian D, Dong Y, Liu X, Yu H, Song Z, Jia C, Zhang Z, Cao S, Hu F, Zhang X. Salidroside promotes the repair of spinal cord injury by inhibiting astrocyte polarization, promoting neural stem cell proliferation and neuronal differentiation. Cell Death Discov 2024; 10:224. [PMID: 38724500 PMCID: PMC11082153 DOI: 10.1038/s41420-024-01989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Spinal cord injury (SCI) remains a formidable challenge, lacking effective treatments. Following SCI, neural stem cells (NSCs) migrate to SCI sites, offering a potential avenue for nerve regeneration, but the effectiveness of this intrinsic repair mechanism remains suboptimal. Salidroside has demonstrated pro-repair attributes in various pathological conditions, including arthritis and cerebral ischemia, and the ability to curtail early-stage inflammation following SCI. However, the specific role of salidroside in the late-stage repair processes of SCI remains less defined. In this investigation, we observed that continuous salidroside treatment in SCI mice improved motor function recovery. Immunofluorescence-staining corroborated salidroside's capacity to stimulate nerve regeneration and remyelination, suppress glial scar hyperplasia, reduce the activation of neurotoxic A1 astrocytes, and facilitate NSCs migration towards the injured region. Mechanistically, in vitro experiments elucidated salidroside's significant role in restraining astrocyte proliferation and A1 polarization. It was further established that A1 astrocytes hinder NSCs proliferation while inducing their differentiation into astrocytes. Salidroside effectively ameliorated this inhibition of NSCs proliferation through diminishing c-Jun N-terminal kinase (JNK) pathway phosphorylation and restored their differentiation into neurons by suppressing the signal transducer and activator of transcription 3 (STAT3) pathway. In summary, our findings suggest that salidroside holds promise as a therapeutic agent for traumatic SCI treatment.
Collapse
Affiliation(s)
- Dingfei Qian
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuan Dong
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiaole Liu
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haichao Yu
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zelong Song
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Chengqi Jia
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shiqi Cao
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Fanqi Hu
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xuesong Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
17
|
Zhang S, Wu J, Wang L, Mu L, Xu X, Li J, Tang G, Chen G, Zhang C, Zhang Y, Feng Y. SIRT1/P53 in retinal pigment epithelial cells in diabetic retinopathy: a gene co-expression analysis and He-Ying-Qing-Re formula treatment. Front Mol Biosci 2024; 11:1366020. [PMID: 38633216 PMCID: PMC11021775 DOI: 10.3389/fmolb.2024.1366020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-β, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leilei Wang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Lin Mu
- Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
18
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Gu C, Geng X, Wu Y, Dai Y, Zeng J, Wang Z, Fang H, Sun Y, Chen X. Engineered Macrophage Membrane-Coated Nanoparticles with Enhanced CCR2 Expression Promote Spinal Cord Injury Repair by Suppressing Neuroinflammation and Neuronal death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305659. [PMID: 37884477 DOI: 10.1002/smll.202305659] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Spinal cord injury (SCI) is a severe neurological disorder characterized by significant disability and limited treatment options. Mitigating the secondary inflammatory response following the initial injury is the primary focus of current research in the treatment of SCI. CCL2 (C─C motif chemokine ligand 2) serves as the primary regulator responsible for inflammatory chemotaxis of the majority of peripheral immune cells, blocking the CCL2-CCR2 (C─C chemokine receptor type 2) axis has shown considerable therapeutic potential for inflammatory diseases, including SCI. In this study, it presents a multifunctional biomimetic nanoplatform (CCR2-MM@PLGA/Cur) specifically designed to target the CCL2-CCR2 axis, which consisted of an engineered macrophage membrane (MM) coating with enhanced CCR2 expression and a PLGA (poly (lactic-co-glycolic acid)) nanoparticle that encapsulated therapeutic drugs. CCR2 overexpression on MM not only enhanced drug-targeted delivery to the injury site, but also attenuated macrophage infiltration, microglia pro-inflammatory polarization, and neuronal apoptosis by trapping CCL2. Consequently, it facilitated neural regeneration and motor function recovery in SCI mice, enabling a comprehensive treatment approach for SCI. The feasibility and efficacy of this platform are confirmed through a series of in vitro and in vivo assays, offering new insights and potential avenues for further exploration in the treatment of SCI.
Collapse
Affiliation(s)
- Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Yicheng Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Yuya Dai
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Zhenqiang Wang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Yanqing Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, P. R. China
| |
Collapse
|
20
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
21
|
Xie Y, Luo Z, Peng W, Liu Y, Yuan F, Xu J, Sun Y, Lu H, Wu T, Jiang L, Hu J. Inhibition of UTX/KDM6A improves recovery of spinal cord injury by attenuating BSCB permeability and macrophage infiltration through the MLCK/p-MLC pathway. J Neuroinflammation 2023; 20:259. [PMID: 37951955 PMCID: PMC10638785 DOI: 10.1186/s12974-023-02936-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Spinal cord injury (SCI) can prompt an immediate disruption to the blood-spinal cord barrier (BSCB). Restoring the integrity of this barrier is vital for the recovery of neurological function post-SCI. The UTX protein, a histone demethylase, has been shown in previous research to promote vascular regeneration and neurological recovery in mice with SCI. However, it is unclear whether UTX knockout could facilitate the recovery of the BSCB by reducing its permeability. In this study, we systematically studied BSCB disruption and permeability at different time points after SCI and found that conditional UTX deletion in endothelial cells (ECs) can reduce BSCB permeability, decrease inflammatory cell infiltration and ROS production, and improve neurological function recovery after SCI. Subsequently, we used RNA sequencing and ChIP-qPCR to confirm that conditional UTX knockout in ECs can down-regulate expression of myosin light chain kinase (MLCK), which specifically mediates myosin light chain (MLC) phosphorylation and is involved in actin contraction, cell retraction, and tight junctions (TJs) protein integrity. Moreover, we found that MLCK overexpression can increase the ratio of p-MLC/MLC, further break TJs, and exacerbate BSCB deterioration. Overall, our findings indicate that UTX knockout could inhibit the MLCK/p-MLC pathway, resulting in decreased BSCB permeability, and ultimately promoting neurological recovery in mice. These results suggest that UTX is a promising new target for treating SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Liu Y, Cui H, Mei C, Cui M, He Q, Wang Q, Li D, Song Y, Li J, Chen S, Zhu C. Sirtuin4 alleviates severe acute pancreatitis by regulating HIF-1α/HO-1 mediated ferroptosis. Cell Death Dis 2023; 14:694. [PMID: 37865653 PMCID: PMC10590376 DOI: 10.1038/s41419-023-06216-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Acute pancreatitis (AP) is a common emergency of the digestive system and serious cases can develop into severe acute pancreatitis (SAP), which ortality rates up to 30%. Sirtuin4 (SIRT4) is a member of the sirtuin family, and plays a key role in inflammation and oxidative stress. However, the potential role of SIRT4 in SAP has yet to be elucidated. In the present study, we found that the expression level of SIRT4 in human AP was downregulated by screening a public database, suggesting that SIRT4 may play a role in AP. Subsequently, we used L-arginine (L-Arg) to induce SAP in SIRT4 knockout (SIRT4_KO) and SIRT4 overexpression (AAV_SIRT4) mice. The results showed that the pancreatic tissue injury and related lung and kidney injury were serious in SIRT4_KO mice after SAP induction, but were significantly reduced in AAV_SIRT4 mice. More importantly, we found that the levels of antioxidant factors GSH and SOD were decreased in SIRT4_KO mice, and the production of oxidative products and lipid peroxidation markers was increased, suggesting that SIRT4 was involved in inflammation and oxidative stress during SAP. Further studies showed that the absence or overexpression of SIRT4 affected the expression level of Hypoxia-inducible factor-1α (HIF-1α) after SAP induction, and regulated the expression of ferroptosis related proteins by mediating HIF-1α/HO-1 pathway. Collectively, our study revealed that SIRT4 plays a protective role in SAP by regulating the HIF-1α/HO-1 pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Huning Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chaopeng Mei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengwei Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian He
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiaofang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Dejian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Yaodong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Sanyang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China.
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China.
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Changju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China.
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China.
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
23
|
Xie Y, Sun Y, Liu Y, Zhao J, Liu Q, Xu J, Qin Y, He R, Yuan F, Wu T, Duan C, Jiang L, Lu H, Hu J. Targeted Delivery of RGD-CD146 +CD271 + Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood-Spinal Cord Barrier Repair after Spinal Cord Injury. ACS NANO 2023; 17:18008-18024. [PMID: 37695238 DOI: 10.1021/acsnano.3c04423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|