1
|
Lai Y, Zhu Y, Zhang X, Ding S, Wang F, Hao J, Wang Z, Shi C, Xu Y, Zheng L, Huang W. Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome. Pharmacol Res 2025; 214:107672. [PMID: 40010448 DOI: 10.1016/j.phrs.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The characteristic of cardiorenal syndrome (CRS) is simultaneous damage to both the heart and kidneys. CRS has caused a heavy burden of mortality and incidence rates worldwide. The regulation of host microbiota metabolism that triggers heart and kidney damage is an emerging research field that promotes a new perspective on cardiovascular risk. We summarize current studies from bench to bedside of gut microbiota-derived metabolites to better understand CRS in the context of gut microbiota-derived metabolites. We focused on the involvement of gut microbiota-derived metabolites in the pathophysiology of CRS, including lipid and cholesterol metabolism disorders, coagulation abnormalities and platelet aggregation, oxidative stress, endothelial dysfunction, inflammation, mitochondrial damage and energy metabolism disorders, vascular calcification and renal fibrosis, as well as emerging therapeutic approaches targeting CRS metabolism in gut microbiota-derived metabolites which provides an innovative treatment approach for CRS to improve patient prognosis and overall quality of life.
Collapse
Affiliation(s)
- Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Xihui Zhang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Jincen Hao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Congqi Shi
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yongjin Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Taira A, Aavikko M, Katainen R, Kaasinen E, Välimäki N, Ravantti J, Ristimäki A, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Tahkola K, Mattila A, Koskensalo S, Mecklin JP, Böhm J, Bramsen JB, Andersen CL, Palin K, Rajamäki K, Aaltonen LA. Comprehensive metabolomic and epigenomic characterization of microsatellite stable BRAF-mutated colorectal cancer. Oncogene 2025:10.1038/s41388-025-03326-y. [PMID: 40102611 DOI: 10.1038/s41388-025-03326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Oncogenic codon V600E mutations of the BRAF gene affect 10-15% of colorectal cancers, resulting in activation of the MAPK/ERK signaling pathway and increased cell proliferation and survival. BRAF-mutated colorectal tumors are often microsatellite unstable and characterized by high DNA methylation levels. However, the mechanistic link between BRAF mutations and hypermethylation remains controversial. Understanding this link, particularly in microsatellite stable tumors is of great interest as these often show poor survival. We characterized the metabolomic, epigenetic and transcriptomic patterns of altogether 39 microsatellite stable BRAF-mutated colorectal cancers. Metabolomic analysis of tumor tissue showed low levels of vitamin C and its metabolites in BRAF-mutated tumors. Gene expression analysis indicated dysregulation of vitamin C antioxidant activity in these lesions. As vitamin C is an important cofactor for the activity of TET DNA demethylase enzymes, low vitamin C levels could directly contribute to the high methylation levels in these tumors by decreasing enzymatic TET activity. Vitamin C transporter gene SLC23A1 expression, as well as vitamin C metabolite levels, were inversely correlated with DNA methylation levels. This work proposes a new mechanistic link between BRAF mutations and hypermethylation, inspiring further work on the role of vitamin C in the genesis of BRAF-mutated colorectal cancer.
Collapse
Affiliation(s)
- Aurora Taira
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Mervi Aavikko
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Janne Ravantti
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and TAYS Cancer Centre, 33520, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33100, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland
| | - Laura Renkonen-Sinisalo
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Anne Mattila
- Department of Surgery, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Helsinki, 00280, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
- Department of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Jesper Bertram Bramsen
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200, Aarhus, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200, Aarhus, Denmark
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Rajamäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
3
|
Authaida S, Boonkum W, Chankitisakul V. Enhancement of Semen Cryopreservation from Native Thai Bulls Through Moringa oleifera Leaf Extract Supplementation. Animals (Basel) 2025; 15:439. [PMID: 39943209 PMCID: PMC11815745 DOI: 10.3390/ani15030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Cryopreservation of native Thai bull semen often results in significant post-thaw quality reduction, underscoring the need for effective cryoprotective strategies. This study investigated the effect of Moringa oleifera leaf extract (MOLE) as an antioxidant supplementation by incorporating four MOLE concentrations (0-1.5% [w/v]) into a standard semen extender, followed by cryopreservation using liquid nitrogen vapor freezing. Data were analyzed using a randomized complete block design with Tukey's post hoc test (p < 0.05). Post-thaw analysis of semen revealed that 1 mg/mL MOLE significantly enhanced total sperm motility, progressive sperm motility, sperm viability, and sperm plasma membrane integrity compared to the control and other MOLE concentrations (p < 0.05). This concentration also improved the amplitude of lateral head displacement and curvilinear velocity and reduced malondialdehyde levels in semen samples (p < 0.05), indicating reduced lipid peroxidation. Higher MOLE concentrations negatively impacted semen quality. In conclusion, supplementation with 1 mg/mL MOLE markedly improved post-thaw semen quality and reduced lipid peroxidation, suggesting its potential as an antioxidant for enhancing reproductive outcomes in native Thai bulls.
Collapse
Affiliation(s)
- Supakorn Authaida
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.A.); (W.B.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.A.); (W.B.)
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (S.A.); (W.B.)
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Zhang Y, Sun C, Ma L, Xiao G, Gu Y, Yu W. O-GlcNAcylation promotes malignancy and cisplatin resistance of lung cancer by stabilising NRF2. Clin Transl Med 2024; 14:e70037. [PMID: 39358921 PMCID: PMC11447106 DOI: 10.1002/ctm2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The transcription factor NRF2 plays a significant role in regulating genes that protect cells from oxidative damage. O-GlcNAc modification, a type of posttranslational modification, is crucial for cellular response to stress. Although the involvement of both NRF2 and O-GlcNAc in maintaining cellular redox balance and promoting cancer malignancy has been demonstrated, the potential mechanisms remain elusive. METHODS The immunoblotting, luciferase reporter, ROS assay, co-immunoprecipitation, and immunofluorescence was used to detect the effects of global cellular O-GlcNAcylation on NRF2. Mass spectrometry was utilised to map the O-GlcNAcylation sites on NRF2, which was validated by site-specific mutagenesis and O-GlcNAc enzymatic labelling. Human lung cancer samples were employed to verify the association between O-GlcNAc and NRF2. Subsequently, the impact of NRF2 O-GlcNAcylation in lung cancer malignancy and cisplatin resistance were evaluated in vitro and in vivo. RESULTS NRF2 is O-GlcNAcylated at Ser103 residue, which hinders its binding to KEAP1 and thus enhances its stability, nuclear localisation, and transcription activity. Oxidative stress and cisplatin can elevate the phosphorylation of OGT at Thr444 through the activation of AMPK kinase, leading to enhanced binding of OGT to NRF2 and subsequent elevation of NRF2 O-GlcNAcylation. Both in cellular and xenograft mouse models, O-GlcNAcylation of NRF2 at Ser103 promotes the malignancy of lung cancer. In human lung cancer tissue samples, there was a significant increase in global O-GlcNAcylation, and elevated levels of NRF2 and its O-GlcNAcylation compared to paired adjacent normal tissues. Chemotherapy promotes NRF2 O-GlcNAcylation, which in turn decreases cellular ROS levels and drives lung cancer cell survival. CONCLUSION Our findings indicate that OGT O-GlcNAcylates NRF2 at Ser103, and this modification plays a role in cellular antioxidant, lung cancer malignancy, and cisplatin resistance.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Changning Sun
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Leina Ma
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Guokai Xiao
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Yuchao Gu
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Wengong Yu
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| |
Collapse
|
5
|
Leto L, Favari C, Agosti A, Del Vecchio L, Di Fazio A, Bresciani L, Mena P, Guarrasi V, Cirlini M, Chiancone B. Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants (Basel) 2024; 13:909. [PMID: 39199155 PMCID: PMC11351401 DOI: 10.3390/antiox13080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The demand for bioactive secondary metabolites of natural origin is increasing every day. Micropropagation could be a strategy to respond more quickly to market demands, regardless of seasonality. This research aims to evaluate in vitro-grown plants of two hop varieties, namely Columbus and Magnum, as a potential source of bioactive compounds. The extracts were characterized in terms of total phenolic content by a Folin-Ciocalteu assay and antioxidant capacity by DPPH•, ABTS+, and FRAP assays. The bioactive compound profile of the extracts from both varieties was determined by using UPLC-ESI-QqQ-MS/MS. The results confirmed richness in (poly)phenols and other secondary metabolites of the in vitro-grown hop plantlets. Thirty-two compounds belonging to the major families of phytochemicals characteristic of the species were identified, and twenty-six were quantified, mainly flavonoids, including xanthohumol and isoxanthohumol, phenolic acids, as well as α- and β-acids. This study confirms the validity of in vitro-derived hop plantlets as source of bioactive compounds to be used in the nutraceutical, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Claudia Favari
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Anna Agosti
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Andrea Di Fazio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Letizia Bresciani
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Pedro Mena
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| |
Collapse
|
6
|
Zhang Y, Bai B, Huang K, Li S, Cao H, Guan X. Bound Polyphenols of Oat Bran Released by Gut Microbiota Mitigate High Fat Diet-Induced Oxidative Stress and Strengthen the Gut Barrier via the Colonic ROS/Akt/Nrf2 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13099-13110. [PMID: 38807079 DOI: 10.1021/acs.jafc.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Whole-grain foods are rich in bound polyphenols (BPs) whose health benefits were largely underestimated compared with free polyphenols. We first found that DFBP (dietary fiber with BPs from oat bran) exhibited stronger colonic antioxidant activities than DF. 16S rRNA sequencing showed that DFBP selectively changed gut microbial composition, which reciprocally released BPs from DFBP. Released polyphenols from DFBP reduced excessive colonic ROS and exhibited colonic antioxidant activities via the ROS/Akt/Nrf2 pathway revealed by transcriptome and western blot analysis. Colonic antioxidant activities of DFBP mediated by gut microbiota were next proven by treating mice with broad-spectrum antibiotics. Next, Clostridium butyricum, as a distinguished bacterium after DFBP intervention, improved colonic antioxidant capacities synergistically with DFBP in HFD-fed mice. This was explained by the upregulated mRNA expression of esterase, and cellulase of Clostridium butyricum participated in releasing BPs. Our results would provide a solid basis for explaining the health benefits of whole grains.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Bing Bai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
7
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
8
|
Sun C, Wang Z, Tan Y, Li L, Zhou F, Hu SA, Yan QW, Li LH, Pei G. Mechanism of Mulberry Leaves and Black Sesame in Alleviating Slow Transit Constipation Revealed by Multi-Omics Analysis. Molecules 2024; 29:1713. [PMID: 38675536 PMCID: PMC11051911 DOI: 10.3390/molecules29081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional Chinese medicine (TCM) possesses the potential of providing good curative effects with no side effects for the effective management of slow transit constipation (STC), an intestinal disease characterized by colonic dyskinesia. Mulberry leaves (Morus alba L.) and black sesame (Sesamum indicum L.), referred to as SH, are processed and conditioned as per standardized protocols. SH has applications as food and medicine. Accordingly, we investigated the therapeutic potential of SH in alleviating STC. The analysis of SH composition identified a total of 504 compounds. The intervention with SH significantly improved intestinal motility, reduced the time for the first black stool, increased antioxidant activity, and enhanced water content, thereby effectively alleviating colon damage caused by STC. Transcriptome analysis revealed the SH in the treatment of STC related to SOD1, MUC2, and AQP1. The analysis of 16S rRNA gene sequences indicated notable differences in the abundance of 10 bacteria between the SH and model. Metabolomic analysis further revealed that SH supplementation increased the levels of nine metabolites associated with STC. Integrative analysis revealed that SH modulated amino acid metabolism, balanced intestinal flora, and targeted key genes (i.e., SOD1, MUC2, AQP1) to exert its effects. SH also inhibited the AQP1 expression and promoted SOD1 and MUC2 expression.
Collapse
Affiliation(s)
- Chen Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Zheng Wang
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Yang Tan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-An Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qin-Wen Yan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lin-Hui Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
9
|
Amro Z, Collins-Praino L, Yool A. Protective roles of peroxiporins AQP0 and AQP11 in human astrocyte and neuronal cell lines in response to oxidative and inflammatory stressors. Biosci Rep 2024; 44:BSR20231725. [PMID: 38451099 PMCID: PMC10965398 DOI: 10.1042/bsr20231725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024] Open
Abstract
In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.
Collapse
Affiliation(s)
- Zein Amro
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|