1
|
Di Francesco D, Marcello E, Casarella S, Copes F, Chevallier P, Carmagnola I, Mantovani D, Boccafoschi F. Characterization of a decellularized pericardium extracellular matrix hydrogel for regenerative medicine: insights on animal-to-animal variability. Front Bioeng Biotechnol 2024; 12:1452965. [PMID: 39205858 PMCID: PMC11350490 DOI: 10.3389/fbioe.2024.1452965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
In the past years, the use of hydrogels derived from decellularized extracellular matrix (dECM) for regenerative medicine purposes has significantly increased. The intrinsic bioactive and immunomodulatory properties indicate these materials as promising candidates for therapeutical applications. However, to date, limitations such as animal-to-animal variability still hinder the clinical translation. Moreover, the choice of tissue source, decellularization and solubilization protocols leads to differences in dECM-derived hydrogels. In this context, detailed characterization of chemical, physical and biological properties of the hydrogels should be performed, with attention to how these properties can be affected by animal-to-animal variability. Herein, we report a detailed characterization of a hydrogel derived from the decellularized extracellular matrix of bovine pericardium (dBP). Protein content, rheological properties, injectability, surface microstructure, in vitro stability and cytocompatibility were evaluated, with particular attention to animal-to-animal variability. The gelation process showed to be thermoresponsive and the obtained dBP hydrogels are injectable, porous, stable up to 2 weeks in aqueous media, rapidly degrading in enzymatic environment and cytocompatible, able to maintain cell viability in human mesenchymal stromal cells. Results from proteomic analysis proved that dBP hydrogels are highly rich in composition, preserving bioactive proteoglycans and glycoproteins in addition to structural proteins such as collagen. With respect to the chemical composition, animal-to-animal variability was shown, but the biological properties were not affected, which remained consistent in different batches. Taken together these results show that dBP hydrogels are excellent candidates for regenerative medicine applications.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
2
|
Gujjar S, Tyagi A, Sainger S, Bharti P, Nain V, Sood P, Jayabal P, Sharma JC, Sharma P, Rajput S, Pandey AK, Pandey AK, Abnave P, Mathapati S. Biocompatible Human Placental Extracellular Matrix Derived Hydrogels. Adv Biol (Weinh) 2024; 8:e2300349. [PMID: 37786307 DOI: 10.1002/adbi.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Solubilizing extracellular matrix (ECM) materials and transforming them into hydrogels has expanded their potential applications both in vitro and in vivo. In this study, hydrogels are prepared by decellularization of human placental tissue using detergent and enzymes and by the subsequent creation of a homogenized acellular placental tissue powder (P-ECM). A perfusion-based decellularization approach is employed using detergent and enzymes. The P-ECM with and without gamma irradiation is then utilized to prepare P-ECM hydrogels. Physical and biological evaluations are conducted to assess the suitability of the P-ECM hydrogels for biocompatibility. The decellularized tissue has significantly reduced cellular content and retains the major ECM proteins. Increasing the concentration of P-ECM leads to improved mechanical properties of the P-ECM hydrogels. The biocompatibility of the P-ECM hydrogel is demonstrated through cell proliferation and viability assays. Notably, gamma-sterilized P-ECM does not support the formation of a stable hydrogel. Nonetheless, the use of HCl during the digestion process effectively decreases spore growth and bacterial bioburden. The study demonstrates that P-ECM hydrogels exhibit physical and biological attributes conducive to soft tissue reconstruction. These hydrogels establish a favorable microenvironment for cell growth and the need for investigating innovative sterilization methods.
Collapse
Affiliation(s)
- Sunil Gujjar
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Anurag Tyagi
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Saloni Sainger
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Puja Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Vaibhav Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Pratibha Sood
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Prakash Jayabal
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Jagadish Chandra Sharma
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Priyanka Sharma
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Sanjay Rajput
- Shriram Institute for Industrial Research, Delhi, 110007, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Prasad Abnave
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Santosh Mathapati
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| |
Collapse
|
3
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Chen Y, Sun X, Peng Y, Eichenbaum JV, Ren L, Liu Y. Effects of Different Radiation Sources on the Performance of Collagen-Based Corneal Repair Materials and Macrophage Polarization. ACS OMEGA 2022; 7:22559-22566. [PMID: 35811904 PMCID: PMC9260758 DOI: 10.1021/acsomega.2c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Owing to the lack of donor corneas, there is an urgent need for suitable corneal substitutes. As the main component of the corneal stroma, collagen has great advantages as a corneal repair material. If there are microorganisms such as bacteria in the corneal repair material, it may induce postoperative infection, causing the failure of corneal transplantation. Therefore, irradiation, as a common sterilization method, is often used to control the microorganisms in the material. However, it has not been reported which type of radiation source and what doses can sterilize more effectively without affecting the properties of collagen-based corneal repair materials (CCRMs) and have a positive impact on macrophage polarization. In this study, three different radiation sources of ultraviolet, cobalt-60, and electron beam at four different doses of 2, 5, 8, and 10 kGy were used to irradiate CCRMs. The swelling, stretching, transmittance, and degradation of the irradiated CCRMs were characterized, and the proliferation of human corneal epithelial cells on the irradiated CCRMs was characterized using the CCK8 kit. The results showed that low dose (<5 kGy) of radiation had little effect on the performance of CCRMs. Three irradiation methods with less influence were selected for the further study on RAW264.7 macrophage polarization. The results indicated that CCRMs treated with UV could downregulate the expression of pro-inflammatory related genes and upregulate the expression of anti-inflammatory genes in macrophages, which indicated that UV irradiation is a beneficial process for the preparation of CCRMs.
Collapse
Affiliation(s)
- Yi Chen
- Guangzhou
Redsun Gas Appliance Co., Ltd., Guangzhou 510460, P. R.
China
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - Xiaomin Sun
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - Yuehai Peng
- School
of Biological Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - James Valenti Eichenbaum
- Viterbi
School of Engineering, University of Southern
California, Los
Angeles, California 90089, United States
| | - Li Ren
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - Yanchun Liu
- Guangzhou
Redsun Gas Appliance Co., Ltd., Guangzhou 510460, P. R.
China
| |
Collapse
|
5
|
Gholami K, Solhjoo S, Aghamir SMK. Application of Tissue-Specific Extracellular Matrix in Tissue Engineering: Focus on Male Fertility Preservation. Reprod Sci 2022; 29:3091-3099. [PMID: 35028926 DOI: 10.1007/s43032-021-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
In vitro spermatogenesis and xenotransplantation of the immature testicular tissues (ITT) are the experimental approaches that have been developed for creating seminiferous tubules-like functional structures in vitro and keeping the integrity of the ITTs in vivo, respectively. These strategies are rapidly developing in response to the growing prevalence of infertility in adolescent boys undergoing cancer treatment, by the logic that there is no sperm cryopreservation option for them. Recently, with the advances made in the field of tissue engineering and biomaterials, these methods have achieved promising results for fertility preservation. Due to the importance of extracellular matrix for the formation of vascular bed around the grafted ITTs and also the creation of spatial arrangements between Sertoli cells and germ cells, today it is clear that the scaffold plays a very important role in the success of these methods. Decellularized extracellular matrix (dECM) as a biocompatible, functionally graded, and biodegradable scaffold with having tissue-specific components and growth factors can support reorganization and physiologic processes of originated cells. This review discusses the common protocols for the tissue decellularization, sterilization, and hydrogel formation of the decellularized and lyophilized tissues as well as in vitro and in vivo studies on the use of the testis-derived dECM for testicular organoids.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
6
|
Fabrication and Analysis of Polydimethylsiloxane (PDMS) Microchannels for Biomedical Application. Processes (Basel) 2020. [DOI: 10.3390/pr9010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this research work, Polydimethylsiloxane (PDMS) has been used for the fabrication of microchannels for biomedical application. Under the internet of things (IoT)-based controlled environment, the authors have simulated and fabricated bio-endurable, biocompatible and bioengineered PDMS-based microchannels for varicose veins implantation exclusively to avoid tissue damaging. Five curved ascending curvilinear micro-channel (5CACMC) and five curved descending curvilinear micro-channels (5CDCMC) are simulated by MATLAB (The Math-Works, Natick, MA, USA) and ANSYS (ANSYS, The University of Lahore, Pakistan) with actual environments and confirmed experimentally. The total length of each channel is 1.6 cm. The diameter of both channels is 400 µm. In the ascending channel, the first to fifth curve cycles have the radii of 2.5 mm, 5 mm, 7.5 mm, 10 mm, and 2.5 mm respectively. In the descending channel, the first and second curve cycles have the radii of 12.5 mm and 10 mm respectively. The third to fifth cycles have the radii of 7.5 mm, 5 mm, and 2.5 mm respectively. For 5CACMC, at Reynolds number of 185, the values of the flow rates, velocities and pressure drops are 19.7 µLs−1, 0.105 mm/s and 1.18 Pa for Fuzzy simulation, 19.3 µLs−1, 0.1543 mm/s and 1.6 Pa for ANSYS simulation and 18.23 µLs−1, 0.1332 mm/s and 1.5 Pa in the experiment. For 5CDCMC, at Reynolds number 143, the values of the flow rates, velocities and pressure drops are 15.4 µLs−1, 0.1032 mm/s and 1.15 Pa for Fuzzy simulation, 15.0 µLs−1, 0.120 mm/s and 1.22 Pa for ANSYS simulation and 14.08 µLs−1, 0.105 mm/s and 1.18 Pa in the experiment. Both channels have three inputs and one output. In order to observe Dean Flow, Dean numbers are also calculated. Therefore, both PDMS channels can be implanted in place of varicose veins to have natural blood flow.
Collapse
|
7
|
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020; 21:E5447. [PMID: 32751654 PMCID: PMC7432490 DOI: 10.3390/ijms21155447] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Beatriz Olalde-Graells
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020; 48:2132-2153. [PMID: 31741227 PMCID: PMC7231673 DOI: 10.1007/s10439-019-02408-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
Collapse
Affiliation(s)
- Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep 2019; 9:14933. [PMID: 31624357 PMCID: PMC6797749 DOI: 10.1038/s41598-019-49575-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Tissue-derived decellularized biomaterials are ideal for tissue engineering applications as they mimic the biochemical composition of the native tissue. These materials can be used as hydrogels for cell encapsulation and delivery. The decellularization process can alter the composition of the extracellular matrix (ECM) and thus influence the hydrogels characteristics. The aim of this study was to examine the impact of decellularization protocols in ECM-derived hydrogels obtained from porcine corneas. Porcine corneas were isolated and decellularized with SDS, Triton X-100 or by freeze-thaw cycles. All decellularization methods decreased DNA significantly when measured by PicoGreen and visually assessed by the absence of cell nuclei. Collagen and other ECM components were highly retained, as quantified by hydroxyproline content and sGAG, by histological analysis and by SDS-PAGE. Hydrogels obtained by freeze-thaw decellularization were the most transparent. The method of decellularization impacted gelation kinetics assessed by turbidimetric analysis. All hydrogels showed a fibrillary and porous structure determined by cryoSEM. Human corneal stromal cells were embedded in the hydrogels to assess cytotoxicity. SDS decellularization rendered cytotoxic hydrogels, while the other decellularization methods produced highly cytocompatible hydrogels. Freeze-thaw decellularization produced hydrogels with the overall best properties.
Collapse
|
10
|
Kremser T, Susoff M, Roth S, Kaschta J, Schubert DW. Degradation studies of a commercial radiation‐resistant polypropylene sterilized by gamma and electron beam technology before and after subsequent accelerated aging cycles. J Appl Polym Sci 2019. [DOI: 10.1002/app.48436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Kremser
- B.Braun Melsungen AG 34212 Melsungen Germany
- Institute of Polymer MaterialsUniversity Erlangen‐Nuremberg 91058 Erlangen Germany
| | | | - Stefan Roth
- University of Applied Sciences Schmalkalden 98574 Schmalkalden Germany
| | - Joachim Kaschta
- Institute of Polymer MaterialsUniversity Erlangen‐Nuremberg 91058 Erlangen Germany
| | - Dirk W. Schubert
- Institute of Polymer MaterialsUniversity Erlangen‐Nuremberg 91058 Erlangen Germany
| |
Collapse
|
11
|
Blaudez F, Ivanovski S, Hamlet S, Vaquette C. An overview of decellularisation techniques of native tissues and tissue engineered products for bone, ligament and tendon regeneration. Methods 2019; 171:28-40. [PMID: 31394166 DOI: 10.1016/j.ymeth.2019.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Decellularised tissues and organs have been successfully used in a variety of tissue engineering/regenerative medicine applications. Because of the complexity of each tissue (size, porosity, extracellular matrix (ECM) composition etc.), there is no standardised protocol and the decellularisation methods vary widely, thus leading to heterogeneous outcomes. Physical, chemical, and enzymatic methods have been developed and optimised for each specific application and this review describes the most common strategies utilised to achieve decellularisation of soft and hard tissues. While removal of the DNA is the primary goal of decellularisation, it is generally achieved at the expense of ECM preservation due to the harsh chemical or enzymatic processing conditions. As denaturation of the native ECM has been associated with undesired host responses, decellularisation conditions aimed at effectively achieving simultaneous DNA removal and minimal ECM damage will be highlighted. Additionally, the utilisation of decellularised matrices in regenerative medicine is explored, as are the most recent strategies implemented to circumvent challenges in this field. In summary, this review focusses on the latest advancements and future perspectives in the utilisation of natural ECM for the decoration of synthetic porous scaffolds.
Collapse
Affiliation(s)
- F Blaudez
- Griffith University, School of Dentistry, Gold Coast, Australia
| | - S Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia
| | - S Hamlet
- Griffith University, School of Dentistry, Gold Coast, Australia
| | - C Vaquette
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| |
Collapse
|
12
|
Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109942. [PMID: 31499951 DOI: 10.1016/j.msec.2019.109942] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
Decellularized matrix (dECM) is isolated extracellular matrix of tissues from its original inhabiting cells, which has emerged as a promising natural biomaterial for tissue engineering, aiming at support, replacement or regeneration of damaged tissues. The dECM can be easily obtained from tissues/organs of various species by adequate decellularization methods, and mimics the structure and composition of the native extracellular matrix, providing a favorable cellular environment. In this review, we summarize the recent developments in the preparation of dECM materials, including decellularization, crosslinking and sterilization. Also, we cover the advances in the utilization of dECM biomaterials in regeneration medicine in pre-clinic and clinical trials. Moreover, we highlight those emerging medical benefits of dECM beyond tissue engineering, such as cell transplantation, in vitro/in vivo model and therapeutic cues delivery. With the advances in the preparation and broader application, the dECM biomaterials could become the gold scaffold and pharmaceutical excipients in medical sciences.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|