1
|
Dong X, Askinas C, Kim J, Sherman JE, Bonassar LJ, Spector J. Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning. J Tissue Eng Regen Med 2022; 16:825-835. [PMID: 35689509 DOI: 10.1002/term.3332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023]
Abstract
A major challenge to the clinical translation of tissue-engineered ear scaffolds for ear reconstruction is the limited auricular chondrocyte (hAuC) yield available from patients. Starting with a relatively small number of chondrocytes in culture results in dedifferentiation and loss of phenotype with subsequent expansion. To significantly decrease the number of chondrocytes required for human elastic cartilage engineering, we co-cultured human mesenchymal stem cells (hMSCs) with HAuCs to promote healthy elastic cartilage formation. HAuCs along with human bone marrow-derived hMSCs were encapsulated into 1% Type I collagen at 25 million/mL total cell density with different ratios (HAuCs/hMSCs: 10/90, 25/75, 50/50) and then injected into customized 3D-printed polylactic acid (PLA) ridged external scaffolds, which simulate the shape of the auricular helical rim, and implanted subcutaneously in nude rats for 1, 3 and 6 months. The explanted constructs demonstrated near complete volume preservation and topography maintenance of the ridged "helical" feature after 6 months with all ratios. Cartilaginous appearing tissue formed within scaffolds by 3 months, verified by histologic analysis demonstrating mature elastic cartilage within the constructs with chondrocytes seen in lacunae within a Type II collagen and proteoglycan-enriched matrix, and surrounded by a neoperichondrial external layer. Compressive mechanical properties comparable to human elastic cartilage were achieved after 6 months. Co-implantation of hAuCs and hMSCs in collagen within an external scaffold efficiently produced shaped human elastic cartilage without volume loss even when hAuC comprised only 10% of the implanted cell population, marking a crucial step toward the clinical translation of auricular tissue engineering.
Collapse
Affiliation(s)
- Xue Dong
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Carly Askinas
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Jongkil Kim
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - John E Sherman
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Jason Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Philippe V, Laurent A, Hirt-Burri N, Abdel-Sayed P, Scaletta C, Schneebeli V, Michetti M, Brunet JF, Applegate LA, Martin R. Retrospective Analysis of Autologous Chondrocyte-Based Cytotherapy Production for Clinical Use: GMP Process-Based Manufacturing Optimization in a Swiss University Hospital. Cells 2022; 11:1016. [PMID: 35326468 PMCID: PMC8947208 DOI: 10.3390/cells11061016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cultured autologous human articular chondrocyte (HAC) implantation has been extensively investigated for safe and effective promotion of structural and functional restoration of knee cartilage lesions. HAC-based cytotherapeutic products for clinical use must be manufactured under an appropriate quality assurance system and follow good manufacturing practices (GMP). A prospective clinical trial is ongoing in the Lausanne University Hospital, where the HAC manufacturing processes have been implemented internally. Following laboratory development and in-house GMP transposition of HAC cell therapy manufacturing, a total of 47 patients have been treated to date. The main aim of the present study was to retrospectively analyze the available manufacturing records of the produced HAC-based cytotherapeutic products, outlining the inter-individual variability existing among the 47 patients regarding standardized transplant product preparation. These data were used to ameliorate and to ensure the continued high quality of cytotherapeutic care in view of further clinical investigations, based on the synthetic analyses of existing GMP records. Therefore, a renewed risk analysis-based process definition was performed, with specific focus set on process parameters, controls, targets, and acceptance criteria. Overall, high importance of the interdisciplinary collaboration and of the manufacturing process robustness was underlined, considering the high variability (i.e., quantitative, functional) existing between the treated patients and between the derived primary HAC cell types.
Collapse
Affiliation(s)
- Virginie Philippe
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland;
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Valentine Schneebeli
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Murielle Michetti
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Jean-François Brunet
- Cell Production Center, Service of Pharmacy, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
| |
Collapse
|
3
|
Levinson C, Cavalli E, von Rechenberg B, Zenobi-Wong M, Darwiche SE. Combination of a Collagen Scaffold and an Adhesive Hyaluronan-Based Hydrogel for Cartilage Regeneration: A Proof of Concept in an Ovine Model. Cartilage 2021; 13:636S-649S. [PMID: 33511860 PMCID: PMC8721621 DOI: 10.1177/1947603521989417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Hyaluronic acid-transglutaminase (HA-TG) is an enzymatically crosslinkable adhesive hydrogel with chondrogenic properties demonstrated in vitro and in an ectopic mouse model. In this study, we investigated the feasibility of using HA-TG in a collagen scaffold to treat chondral lesions in an ovine model, to evaluate cartilage regeneration in a mechanically and biologically challenging joint environment, and the influence of the surgical procedure on the repair process. DESIGN Chondral defects of 6-mm diameter were created in the stifle joint of skeletally mature sheep. In a 3-month study, 6 defects were treated with HA-TG in a collagen scaffold to test the stability and biocompatibility of the defect filling. In a 6-month study, 6 sheep had 12 defects treated with HA-TG and collagen and 2 sheep had 4 untreated defects. Histologically observed quality of repair tissue and adjacent cartilage was semiquantitatively assessed. RESULTS HA-TG adhered to the native tissue and did not cause any detectable negative reaction in the surrounding tissue. HA-TG in a collagen scaffold supported infiltration and chondrogenic differentiation of mesenchymal cells, which migrated from the subchondral bone through the calcified cartilage layer. Additionally, HA-TG and collagen treatment led to better adjacent cartilage preservation compared with empty defects (P < 0.05). CONCLUSIONS This study demonstrates that the adhesive HA-TG hydrogel in a collagen scaffold shows good biocompatibility, supports in situ cartilage regeneration and preserves the surrounding cartilage. This proof-of-concept study shows the potential of this approach, which should be further considered in the treatment of cartilage lesions using a single-step procedure.
Collapse
Affiliation(s)
- Clara Levinson
- Tissue Engineering and Biofabrication,
Institute for Biomechanics, Swiss Federal Institute of Technology Zurich (ETH
Zurich), Zurich, Switzerland
| | - Emma Cavalli
- Tissue Engineering and Biofabrication,
Institute for Biomechanics, Swiss Federal Institute of Technology Zurich (ETH
Zurich), Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU),
Vetsuisse Faculty, University of Zurich, Zurich, Switzerland,Center for Applied Biotechnology and
Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering and Biofabrication,
Institute for Biomechanics, Swiss Federal Institute of Technology Zurich (ETH
Zurich), Zurich, Switzerland,Center for Applied Biotechnology and
Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Salim E. Darwiche
- Musculoskeletal Research Unit (MSRU),
Vetsuisse Faculty, University of Zurich, Zurich, Switzerland,Center for Applied Biotechnology and
Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland,Salim Darwiche, Musculoskeletal Research
Unit (MSRU), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260,
Zurich, CH-8057, Switzerland.
| |
Collapse
|
4
|
Tosoratti E, Fisch P, Taylor S, Laurent‐Applegate LA, Zenobi‐Wong M. 3D-Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage. Adv Healthc Mater 2021; 10:e2101094. [PMID: 34633151 PMCID: PMC11469315 DOI: 10.1002/adhm.202101094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Achieving regeneration of articular cartilage is challenging due to the low healing capacity of the tissue. Appropriate selection of cell source, hydrogel, and scaffold materials are critical to obtain good integration and long-term stability of implants in native tissues. Specifically, biomechanical stability and in vivo integration can be improved if the rate of degradation of the scaffold material matches the stiffening of the sample by extracellular matrix secretion of the encapsulated cells. To this end, a novel 3D-printed lactide copolymer is presented as a reinforcement scaffold for an enzymatically crosslinked hyaluronic acid hydrogel. In this system, the biodegradable properties of the reinforced scaffold are matched to the matrix deposition of articular chondrocytes embedded in the hydrogel. The lactide reinforcement provides stability to the soft hydrogel in the early stages, allowing the composite to be directly implanted in vivo with no need for a preculture period. Compared to pure cellular hydrogels, maturation and matrix secretion remain unaffected by the reinforced scaffold. Furthermore, excellent biocompatibility and production of glycosaminoglycans and collagens are observed at all timepoints. Finally, in vivo subcutaneous implantation in nude mice shows cartilage-like tissue maturation, indicating the possibility for the use of these composite materials in one-step surgical procedures.
Collapse
Affiliation(s)
- Enrico Tosoratti
- Institute for BiomechanicsOtto‐Stern‐Weg 7, ETH ZürichZürichCH‐8093Switzerland
| | - Philipp Fisch
- Institute for BiomechanicsOtto‐Stern‐Weg 7, ETH ZürichZürichCH‐8093Switzerland
| | - Scott Taylor
- Poly‐Med Inc51 Technology DriveAndersonSC29625USA
| | - Lee Ann Laurent‐Applegate
- Regenerative Therapy UnitLausanne University HospitalUniversity of LausanneÉpalingesCH‐1066Switzerland
- Center for Applied Biotechnology and Molecular MedicineUniversity of ZürichZürichCH‐8057Switzerland
| | - Marcy Zenobi‐Wong
- Institute for BiomechanicsOtto‐Stern‐Weg 7, ETH ZürichZürichCH‐8093Switzerland
| |
Collapse
|
5
|
Laurent A, Abdel-Sayed P, Ducrot A, Hirt-Burri N, Scaletta C, Jaccoud S, Nuss K, de Buys Roessingh AS, Raffoul W, Pioletti D, von Rechenberg B, Applegate LA, Darwiche S. Development of Standardized Fetal Progenitor Cell Therapy for Cartilage Regenerative Medicine: Industrial Transposition and Preliminary Safety in Xenogeneic Transplantation. Biomolecules 2021; 11:250. [PMID: 33572428 PMCID: PMC7916236 DOI: 10.3390/biom11020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
Diverse cell therapy approaches constitute prime developmental prospects for managing acute or degenerative cartilaginous tissue affections, synergistically complementing specific surgical solutions. Bone marrow stimulation (i.e., microfracture) remains a standard technique for cartilage repair promotion, despite incurring the adverse generation of fibrocartilagenous scar tissue, while matrix-induced autologous chondrocyte implantation (MACI) and alternative autologous cell-based approaches may partly circumvent this effect. Autologous chondrocytes remain standard cell sources, yet arrays of alternative therapeutic biologicals present great potential for regenerative medicine. Cultured human epiphyseal chondro-progenitors (hECP) were proposed as sustainable, safe, and stable candidates for chaperoning cartilage repair or regeneration. This study describes the development and industrial transposition of hECP multi-tiered cell banking following a single organ donation, as well as preliminary preclinical hECP safety. Optimized cell banking workflows were proposed, potentially generating millions of safe and sustainable therapeutic products. Furthermore, clinical hECP doses were characterized as non-toxic in a standardized chorioallantoic membrane model. Lastly, a MACI-like protocol, including hECPs, was applied in a three-month GLP pilot safety evaluation in a caprine model of full-thickness articular cartilage defect. The safety of hECP transplantation was highlighted in xenogeneic settings, along with confirmed needs for optimal cell delivery vehicles and implantation techniques favoring effective cartilage repair or regeneration.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
| | - Aurélie Ducrot
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, CH-2002 Neuchâtel, Switzerland;
| | - Katja Nuss
- Musculoskeletal Research Unit, Zurich Tierspital, University of Zurich, CH-8952 Schlieren, Switzerland; (K.N.); (B.v.R.)
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Wassim Raffoul
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Dominique Pioletti
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, CH-2002 Neuchâtel, Switzerland;
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Zurich Tierspital, University of Zurich, CH-8952 Schlieren, Switzerland; (K.N.); (B.v.R.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; (A.L.); (P.A.-S.); (A.D.); (N.H.-B.); (C.S.); (S.J.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, Jiangsu, China
| | - Salim Darwiche
- Musculoskeletal Research Unit, Zurich Tierspital, University of Zurich, CH-8952 Schlieren, Switzerland; (K.N.); (B.v.R.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
6
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|