1
|
Koehl B, Nivoit P, El Nemer W, Lenoir O, Hermand P, Pereira C, Brousse V, Guyonnet L, Ghinatti G, Benkerrou M, Colin Y, Le Van Kim C, Tharaux PL. The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease. Haematologica 2017; 102:1161-1172. [PMID: 28385784 PMCID: PMC5566019 DOI: 10.3324/haematol.2016.156869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients.
Collapse
Affiliation(s)
- Bérengère Koehl
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France; Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Reference Centre of Sickle Cell Disease, France
| | - Pierre Nivoit
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| | - Wassim El Nemer
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Olivia Lenoir
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| | - Patricia Hermand
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Catia Pereira
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France; Assistance Publique-Hôpitaux de Paris, Necker Hospital, Reference Centre of Sickle Cell Disease, France
| | | | - Léa Guyonnet
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France; Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Giulia Ghinatti
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| | - Malika Benkerrou
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Reference Centre of Sickle Cell Disease, France
| | - Yves Colin
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Caroline Le Van Kim
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Pierre-Louis Tharaux
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| |
Collapse
|
2
|
Liu DM, Sun BW, Sun ZW, Jin Q, Sun Y, Chen X. Suppression of inflammatory cytokine production and oxidative stress by CO-releasing molecules-liberated CO in the small intestine of thermally-injured mice. Acta Pharmacol Sin 2008; 29:838-46. [PMID: 18565282 DOI: 10.1111/j.1745-7254.2008.00816.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether carbon monoxide (CO)-releasing molecules-liberated CO suppress inflammatory cytokine production and oxidative stress in the small intestine of burnt mice. METHODS Twenty-eight mice were assigned to 4 groups. The mice in the sham group (n=7) underwent sham thermal injury, whereas the mice in the burn group (n=7) received 15% total body surface area full-thickness thermal injury, the mice in the burn+CO-releasing molecules (CORM)-2 group (n=7) underwent the same injury with immediate administration of CORM-2 (8 mg/kg, i.v.), and the mice in the burn+inactivated CORM (iCORM)-2 group (n=7) underwent the same injury with immediate administration of iCORM-2. The levels of inflammatory cytokines in the tissue homogenates were measured by ELISA. The levels of malondialdehyde (MDA), nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in the small intestine were also assessed. In the in vitro experiment, Caco-2 cells were stimulated by experimental mouse sera (50%, v/v) for 4 h. Subsequently, the levels of interleukin (IL)-8 and NO in the supernatants were assessed. Reactive oxygen species (ROS) generation in Caco-2 cells was also measured. RESULTS The treatment of burnt mice with CORM-2 significantly attenuated the levels of IL-1beta, TNF-alpha, MDA, and NO in tissue homogenates. This was accompanied by a decrease of iNOS expression. In parallel, the levels of IL-8, NO, and intracellular ROS generation in the supernatants of Caco-2 stimulated by the CORM-2-treated burnt mouse sera was markedly decreased. CONCLUSION CORM-released CO attenuates the production of inflammatory cytokines, prevents burn-induced ROS generation, and suppresses the oxidative stress in the small intestine of burnt mice by interfering with the protein expression of iNOS.
Collapse
Affiliation(s)
- Dong-ming Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang 212001, China
| | | | | | | | | | | |
Collapse
|
3
|
Sun BW, Jin Q, Sun Y, Sun ZW, Chen X, Chen ZY, Cepinskas G. Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. World J Gastroenterol 2008. [PMID: 18069757 DOI: 10.3748/wjg.13.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether Carbon (CO) liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. METHODS Thirty-six mice were assigned to four groups. Mice in the sham group (n = 9) were underwent to sham thermal injury; mice in the burn group (n = 9) received 15% total body surface area full-thickness thermal injury; mice in the burn + CORM-2 group (n = 9) were underwent to the same thermal injury with immediate administration of tricarbonyldichlororuthenium (II) dimer CORM-2 (8 mg/kg, i.v.); and mice in the burn+DMSO group (n = 9) were underwent to the same thermal injury with immediate administration of 160 muL bolus injection of 0.5% DMSO/saline. Histological alterations and granulocyte infiltration of the small intestine were assessed. Polymorphonuclear neutrophil (PMN) accumulation (myeloperoxidase assay) was assessed in mice mid-ileum. Activation of nuclear factor (NF)-kappa B, expression levels of intercellular adhesion molecule-1 (ICAM-1) and inducible heme oxygenase in mid-ileum were assessed. RESULTS Treatment of thermally injured mice with CORM-2 attenuated PMN accumulation and prevented activation of NF-kappa B in the small intestine. This was accompanied by a decrease in the expression of ICAM-1. In parallel, burn-induced granulocyte infiltration in mid-ileum was markedly decreased in the burn mice treated with CORM-2. CONCLUSION CORM-released CO attenuates leukocyte infiltration in the small intestine of thermally injured mice by interfering with NF-kappa B activation and protein expression of ICAM-1, and therefore suppressing the pro-adhesive phenotype of endothelial cells.
Collapse
Affiliation(s)
- Bing-Wei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, 438 Jiefang Rd, Zhenjiang 212001, Jiangsu Province, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Sun BW, Jin Q, Sun Y, Sun ZW, Chen X, Chen ZY, Cepinskas G. Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. World J Gastroenterol 2007; 13:6183-90. [PMID: 18069757 PMCID: PMC4171227 DOI: 10.3748/wjg.v13.i46.6183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether Carbon (CO) liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice.
METHODS: Thirty-six mice were assigned to four groups. Mice in the sham group (n = 9) were underwent to sham thermal injury; mice in the burn group (n = 9) received 15% total body surface area full-thickness thermal injury; mice in the burn + CORM-2 group (n = 9) were underwent to the same thermal injury with immediate administration of tricarbonyldichlororuthenium (II) dimer CORM-2 (8 mg/kg, i.v.); and mice in the burn+DMSO group (n = 9) were underwent to the same thermal injury with immediate administration of 160 μL bolus injection of 0.5% DMSO/saline. Histological alterations and granulocyte infiltration of the small intestine were assessed. Polymorphonuclear neutrophil (PMN) accumulation (myeloperoxidase assay) was assessed in mice mid-ileum. Activation of nuclear factor (NF)-κΒ, expression levels of intercellular adhesion molecule-1 (ICAM-1) and inducible heme oxygenase in mid-ileum were assessed.
RESULTS: Treatment of thermally injured mice with CORM-2 attenuated PMN accumulation and prevented activation of NF-κΒ in the small intestine. This was accompanied by a decrease in the expression of ICAM-1. In parallel, burn-induced granulocyte infiltration in mid-ileum was markedly decreased in the burn mice treated with CORM-2.
CONCLUSION: CORM-released CO attenuates leukocyte infiltration in the small intestine of thermally injured mice by interfering with NF-κΒ activation and protein expression of ICAM-1, and therefore suppressing the pro-adhesive phenotype of endothelial cells.
Collapse
|
5
|
Cetinkaya Z, Esen K, Ozercan IH, Ustundag B, Ayten R, Aygen E. The effect of Bosentan on healing of colonic anastomosis. World J Emerg Surg 2006; 1:37. [PMID: 17173707 PMCID: PMC1764411 DOI: 10.1186/1749-7922-1-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 12/18/2006] [Indexed: 01/05/2023] Open
Abstract
Background Ischemia is the most important factor compromises wound healing in colonic anastomosis. Mesenteric vessels are ligated at first while performing colonic resection and following anastomosis. Therefore blood supply of the related segments of colon temporarily interrupted and ischemia can easily occur. This study was carried out to explore whether Bosentan, an endothelin-receptor antagonist, can eliminate vasoconstruction, increase blood flow in the splanchnic area and anastomotic region and therefore possibly facilitate wound healing and prevent intra-abdominal adhesion formation. Metods Study is conducted on 30 female Wistar-Albino rats weighing 180–240 gr. Rats were allocated into three groups. Group 1 (n = 10) recevied full-thickness resection of the left colon and end-to-end anastomosis. In Groups 2 (n = 10) and 3 (n = 10), vessels of 2–3 cm segment of the left colon were ligated, indications of necrosis of that segment were expected, followed by resection and end-to-end anastomosis. Two milliliter of saline and 5 mg/kg Bosentan was given intraperitoneally in Group 2 and 3, respectively. On postoperativ day 6, intra-abdominal adhesions were scored. Healing of anastomosis, anastomotic bursting pressures, tissue hydroxyproline levels and histopatologically healing scores were assessed. Results Macroscopic adhesion score in Group 3 was lower than the remained groups (p < 0.05). Tissue hydroxyproline levels were significantly higher in Group 3 compared to the Groups 1 and 2 (p < 0.001). Mean anastomotic bursting pressures were 200 mmHg, 164 mmHg and 240 mmHg in Groups 1, 2 an 3, respectively (p < 0.05 between Groups 1 and 3; p < 0.001 between Groups 2 and 3). Histopathologically, healing scores of Group 1 were significantly higher than the other groups (p < 0.05 group 1–3, group 2–3). Conclusion Bosentan increases anastomotic healing of ischemic colonic anastomosis and decreases intra-abdominal adhesion formation.
Collapse
Affiliation(s)
- Ziya Cetinkaya
- Department of General Surgery, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Kazim Esen
- Department of General Surgery, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | | | - Bilal Ustundag
- Department of Biochemistry, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Refik Ayten
- Department of General Surgery, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Erhan Aygen
- Department of General Surgery, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| |
Collapse
|