1
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Changizi Z, Kajbaf F, Moslehi A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J Clin Transl Hepatol 2023; 11:1542-1552. [PMID: 38161499 PMCID: PMC10752810 DOI: 10.14218/jcth.2023.00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a superfamily of nuclear transcription receptors, consisting of PPARα, PPARγ, and PPARβ/δ, which are highly expressed in the liver. They control and modulate the expression of a large number of genes involved in metabolism and energy homeostasis, oxidative stress, inflammation, and even apoptosis in the liver. Therefore, they have critical roles in the pathophysiology of hepatic diseases. This review provides a general insight into the role of PPARs in liver diseases and some of their agonists in the clinic.
Collapse
Affiliation(s)
- Zahra Changizi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Kajbaf
- Veterinary Department, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Xu P, Gildea JJ, Zhang C, Konkalmatt P, Cuevas S, Bigler Wang D, Tran HT, Jose PA, Felder RA. Stomach gastrin is regulated by sodium via PPAR-α and dopamine D1 receptor. J Mol Endocrinol 2020; 64:53-65. [PMID: 31794424 PMCID: PMC7654719 DOI: 10.1530/jme-19-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Gastrin, secreted by stomach G cells in response to ingested sodium, stimulates the renal cholecystokinin B receptor (CCKBR) to increase renal sodium excretion. It is not known how dietary sodium, independent of food, can increase gastrin secretion in human G cells. However, fenofibrate (FFB), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, increases gastrin secretion in rodents and several human gastrin-secreting cells, via a gastrin transcriptional promoter. We tested the following hypotheses: (1.) the sodium sensor in G cells plays a critical role in the sodium-mediated increase in gastrin expression/secretion, and (2.) dopamine, via the D1R and PPAR-α, is involved. Intact human stomach antrum and G cells were compared with human gastrin-secreting gastric and ovarian adenocarcinoma cells. When extra- or intracellular sodium was increased in human antrum, human G cells, and adenocarcinoma cells, gastrin mRNA and protein expression/secretion were increased. In human G cells, the PPAR-α agonist FFB increased gastrin protein expression that was blocked by GW6471, a PPAR-α antagonist, and LE300, a D1-like receptor antagonist. LE300 prevented the ability of FFB to increase gastrin protein expression in human G cells via the D1R, because the D5R, the other D1-like receptor, is not expressed in human G cells. Human G cells also express tyrosine hydroxylase and DOPA decarboxylase, enzymes needed to synthesize dopamine. G cells in the stomach may be the sodium sensor that stimulates gastrin secretion, which enables the kidney to eliminate acutely an oral sodium load. Dopamine, via the D1R, by interacting with PPAR-α, is involved in this process.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - John J Gildea
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Chi Zhang
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Dora Bigler Wang
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Hanh T Tran
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Tsai SC, Tsai MH, Chiu CF, Lu CC, Kuo SC, Chang NW, Yang JS. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:866-876. [PMID: 25545733 DOI: 10.1002/tox.22097] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist and lipid-lowering agent, has been used worldwide for treatment of hyperlipidemia. The clinical trials demonstrate that fenofibrate possesses multiple pharmacological activities, including antitumor effects. However, the precise mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we investigated the anticancer effects of fenofibrate on the migration and invasion of human oral cancer CAL 27 cells. Fenofibrate inhibited the cell migration and invasion of CAL 27 cells by the wound healing and Boyden chamber transwell assays, respectively. In addition, fenofibrate reduced the protein expressions of MMP-1, MMP-2, MMP-7, and MMP-9 by Western blotting and inhibited enzyme activities of MMP-2/-9 using gelatin zymography assay. Results from immunoblotting analysis showed that the proteins of p-LKB1 (Ser428), LKB1, p-AMPKα (Thr172), p-AMPKα1/α2 (Ser425/Ser491), p-AMPKβ1 (Ser108), and AMPKγ1 were upregulated by fenofibrate; the levels of p-IKKα/β (Ser176) and p-IκBα were reduced in fenofibrate-treated cells. Also, fenofibrate suppressed the expressions of nuclear NF-κB p65 and p50 by immunoblotting and NF-κB DNA binding activity by EMSA assay. The anti-invasive effect of fenofibrate was attenuated by compound C [an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor] or dominant negative form of AMPK (DN-AMPKα1). Thus, fenofibrate considerably inhibited metastatic behaviors of CAL 27 cells might be mediated through blocking NF-κB signaling, resulting in the inhibition of MMPs; these effects were AMPK-dependent rather than PPARα signaling. Our findings provide a molecular rationale, whereby fenofibrate exerts anticancer effects and additional beneficial effects for the treatment of cancer patients. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 866-876, 2016.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chang-Fang Chiu
- Department of Hematology and Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, 404, Taiwan
| | - Nai-Wen Chang
- Department of Biochemistry, China Medical University, Taichung, 404, Taiwan
| | - Jai-Sing Yang
- Bracco Pharmaceutical Corp. Ltd., Taipei, 104, Taiwan
| |
Collapse
|
5
|
Saha L. Role of peroxisome proliferator-activated receptors alpha and gamma in gastric ulcer: An overview of experimental evidences. World J Gastrointest Pharmacol Ther 2015; 6:120-126. [PMID: 26558146 PMCID: PMC4635152 DOI: 10.4292/wjgpt.v6.i4.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/11/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Three subtypes, PPARα, PPARβ/δ, and PPARγ, have been identified so far. PPARα is expressed in the liver, kidney, small intestine, heart, and muscle, where it activates the fatty acid catabolism and control lipoprotein assembly in response to long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs (e.g., fenofibrate). PPARβ/δ is more broadly expressed and is implicated in fatty acid oxidation, keratinocyte differentiation, wound healing, and macrophage response to very low density lipoprotein metabolism. This isoform has been implicated in transcriptional-repression functions and has been shown to repress the activity of PPARα or PPARγ target genes. PPARγ1 and γ2 are generated from a single-gene peroxisome proliferator-activated receptors gamma by differential promoter usage and alternative splicing. PPARγ1 is expressed in colon, immune system (e.g., monocytes and macrophages), and other tissues where it participates in the modulation of inflammation, cell proliferation, and differentiation. PPARs regulate gene expression through distinct mechanisms: Ligand-dependent transactivation, ligand-independent repression, and ligand-dependent transrepression. Studies in animals have demonstrated the gastric antisecretory activity of PPARα agonists like ciprofibrate, bezafibrate and clofibrate. Study by Pathak et al also demonstrated the effect of PPARα agonist, bezafibrate, on gastric secretion and gastric cytoprotection in various gastric ulcer models in rats. The majority of the experimental studies is on pioglitazone and rosiglitazone, which are PPARγ activators. In all the studies, both the PPARγ activators showed protection against the gastric ulcer and also accelerate the ulcer healing in gastric ulcer model in rats. Therefore, PPARα and PPARγ may be a target for gastric ulcer therapy. Finally, more studies are also needed to confirm the involvement of PPARs α and γ in gastric ulcer.
Collapse
|
6
|
Zhang HH, Walker F, Kiflemariam S, Whitehead RH, Williams D, Phillips WA, Mikeska T, Dobrovic A, Burgess AW. Selective inhibition of proliferation in colorectal carcinoma cell lines expressing mutant APC or activated B-Raf. Int J Cancer 2009; 125:297-307. [PMID: 19378335 DOI: 10.1002/ijc.24289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor-derived cell lines are indispensable tools for understanding the contribution of activated signaling pathways to the cancer phenotype and for the design and testing of targeted signal therapies. In our study, we characterize 10 colorectal carcinoma cell lines for the presence of mutations in the wnt, Ras/MAPK, PI3K and p53 pathways. The mutational spectrum found in this panel of cell lines is similar to that detected in primary CRC, albeit with higher frequency of mutation in the beta-catenin and B-Raf genes. We have monitored activation of the wnt and Ras/MAPK pathways in these cells and analyzed their sensitivity to selective signaling inhibitors. Using beta-catenin subcellular distribution as a marker, we show that cells harboring APC mutations have low-level activated wnt signaling, which can be blocked by the extracellular wnt inhibitor DKK-1, suggesting autocrine activation of this pathway; proliferation of these cells is also blocked by DKK-1. In contrast, cells with beta-catenin mutations are unresponsive to extracellular wnt inhibition. Constitutive phosphorylation of MAPK is present in the majority of the cell lines and correlates with B-Raf but not K-Ras mutations; correspondingly, the proliferation of cells harboring mutations in B-Raf, but not K-Ras, is exquisitely sensitive inhibition of the MAPK pathway. We find no correlation between PI3K mutation or loss of PTEN expression and increased sensitivity to PI3K inhibitors. Our study discloses clear-cut differences in responsiveness to signaling inhibitors between individual mutations within an activated signaling pathway and suggests likely targets for signal-directed therapy of colorectal carcinomas.
Collapse
Affiliation(s)
- Hui-Hua Zhang
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Centre for Medical Research, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pathak R, Asad M, Hrishikeshavan HJ, Prasad S. Effect of peroxisome proliferator-activated receptor-alpha agonist (bezafibrate) on gastric secretion and gastric cytoprotection in rats. Fundam Clin Pharmacol 2007; 21:291-6. [PMID: 17521298 DOI: 10.1111/j.1472-8206.2007.00475.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) on gastric secretion and gastric cytoprotection was evaluated using five different models of gastric ulcers: acetic acid-induced chronic gastric ulcers, pylorus ligation, ethanol-induced, indomethacin-induced and ischemia-reperfusion-induced gastric ulcers. Bezafibrate, a PPAR-alpha agonist was administered at two different doses of 10 and 100 mg/kg body weight intraperitoneanally. Both doses of bezafibrate showed significant antiulcer effect in ethanol-induced, indomethacin-induced and pylorus ligation-induced gastric ulcers. Bezafibrate increased healing of ulcer in acetic acid-induced chronic gastric ulcer model. Both doses were also effective in preventing gastric lesions induced by ischemia-reperfusion. It was concluded that PPAR-alpha activation increases healing of gastric ulcers and also prevents development of gastric ulcers in rats.
Collapse
Affiliation(s)
- Rahul Pathak
- Department of Pharmacology, Krupanidhi College of Pharmacy, #5 Sarjapur Road, Koramangala, Bangalore 560 034, India
| | | | | | | |
Collapse
|
8
|
Martinsen TC, Bakke I, Chen D, Sandvik AK, Zahlsen K, Aamo T, Waldum HL. Ciprofibrate stimulates the gastrin-producing cell by acting luminally on antral PPAR-alpha. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1052-60. [PMID: 16099866 DOI: 10.1152/ajpgi.00268.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The lipid-lowering drug ciprofibrate stimulates gastrin-producing cells in the rat stomach without lowering gastric acidity. Although suggested to be a luminal action on antral peroxisome proliferator-activated receptor-alpha (PPAR-alpha), the mechanism is still not fully elucidated. Gastric bypass was surgically prepared in male Sprague-Dawley rats. Gastric-bypassed and sham-operated rats were either given ciprofibrate (50 mg.kg(-1).day(-1) in methocel) or vehicle alone for 7 wk. PPAR-alpha knockout (KO) and wild-type (WT) mice were either given ciprofibrate (500 mg.kg(-1).day(-1) in methocel) or vehicle alone for 2 wk. The concentration of gastrin in blood was analyzed. Antral G cell density and gastrin mRNA abundance were determined by using immunostaining and Northern blot analysis. Ciprofibrate did not raise plasma gastrin or G cell density in gastric-bypassed rats, although the gastrin mRNA level was slightly increased. In contrast, ciprofibrate induced hypergastrinemia, a 50% increase in G cell density, and a threefold increase in gastrin mRNA in sham-operated rats. In PPAR-alpha KO mice, ciprofibrate did not raise G cell density or the gastrin mRNA level. The serum gastrin level was reduced by ciprofibrate. In WT mice, ciprofibrate induced hypergastrinemia, a doubling of G cell density, and a threefold increase in gastrin mRNA. Comparing animals dosed with vehicle only, PPAR-alpha KO mice had higher serum gastrin concentration than WT mice. We conclude that the main effects of ciprofibrate on G cells are mediated from the antrum lumen, and the mechanism is dependent on PPAR-alpha. The results indicate that PPAR-alpha may have a role in the physiological regulation of gastrin release.
Collapse
Affiliation(s)
- Tom C Martinsen
- Dept. of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, St. Olav's Hospital HF, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
9
|
|