1
|
Gleixner J, Gattor AO, Humphrys LJ, Brunner T, Keller M. [ 3H]UR-JG102-A Radiolabeled Cyclic Peptide with High Affinity and Excellent Selectivity for the Neuropeptide Y Y 4 Receptor. J Med Chem 2023; 66:13788-13808. [PMID: 37773891 DOI: 10.1021/acs.jmedchem.3c01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The family of human neuropeptide Y receptors (YRs) comprises four subtypes (Y1R, Y2R, Y4R, and Y5R) that are involved in the regulation of numerous physiological processes. Until now, Y4R binding studies have been predominantly performed in hypotonic sodium-free buffers using 125I-labeled derivatives of the endogenous YR agonists pancreatic polypeptide or peptide YY. A few tritium-labeled Y4R ligands have been reported; however, when used in buffers containing sodium at a physiological concentration, their Y4R affinities are insufficient. Based on the cyclic hexapeptide UR-AK86C, we developed a new tritium-labeled Y4R radioligand ([3H]UR-JG102, [3H]20). In sodium-free buffer, [3H]20 exhibits a very low Y4R dissociation constant (Kd 0.012 nM). In sodium-containing buffer (137 mM Na+), the Y4R affinity is lower (Kd 0.11 nM) but still considerably higher compared to previously reported tritiated Y4R ligands. Therefore, [3H]20 represents a useful tool compound for the determination of Y4R binding affinities under physiological-like conditions.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Brunner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Dukorn S, Littmann T, Keller M, Kuhn K, Cabrele C, Baumeister P, Bernhardt G, Buschauer A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug Chem 2017; 28:1291-1304. [DOI: 10.1021/acs.bioconjchem.7b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Kilian Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Division
of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Billrothstraße 11, 5020 Salzburg, Austria
| | - Paul Baumeister
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Jansson ET, Comi TJ, Rubakhin SS, Sweedler JV. Single Cell Peptide Heterogeneity of Rat Islets of Langerhans. ACS Chem Biol 2016; 11:2588-95. [PMID: 27414158 DOI: 10.1021/acschembio.6b00602] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring the chemical composition of individual cells in mammalian organs can provide critical insights toward understanding the mechanisms leading to their normal and pathological function. In this work, single cell heterogeneity of islets of Langerhans is characterized with high throughput by microscopy-guided single cell matrix-assisted laser desorption/ionization mass spectrometry. Two levels of chemical heterogeneity were observed from the analysis of more than 3000 individual cells. Within a single islet, cellular heterogeneity was evident from the exclusive expression of the canonical biomarkers glucagon, insulin, pancreatic polypeptide (PP), and somatostatin within α-, β-, γ-, and δ-cells, respectively. We localized the neuropeptide WE-14, a known cell-to-cell signaling molecule, to individual δ-cells. Moreover, several unreported endogenous peptides generated by dibasic site cleavages of PP were detected within individual γ-cells. Of these, PP(27-36) was previously shown to activate the human Y4 receptor, suggesting it has a signaling role in vivo. Heterogeneity in cell composition was also observed between islets as evidenced by a 50-fold larger α-cell population in islets of the dorsal pancreas compared to the ventral-derived pancreatic islets. Finally, PP(27-36) was more abundant in γ-cells from the ventral region of the pancreas, indicating differences in the extent of PP-prohormone processing in the two regions of the pancreas.
Collapse
Affiliation(s)
- Erik T. Jansson
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Dimers of G-protein coupled receptors as versatile storage and response units. Int J Mol Sci 2014; 15:4856-77. [PMID: 24651459 PMCID: PMC3975428 DOI: 10.3390/ijms15034856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/17/2022] Open
Abstract
The status and use of transmembrane, extracellular and intracellular domains in oligomerization of heptahelical G-protein coupled receptors (GPCRs) are reviewed and for transmembrane assemblies also supplemented by new experimental evidence. The transmembrane-linked GPCR oligomers typically have as the minimal unit an asymmetric ~180 kDa pentamer consisting of receptor homodimer or heterodimer and a G-protein αβγ subunit heterotrimer. With neuropeptide Y (NPY) receptors, this assembly is converted to ~90 kDa receptor monomer-Gα complex by receptor and Gα agonists, and dimers/heteropentamers are depleted by neutralization of Gαi subunits by pertussis toxin. Employing gradient centrifugation, quantification and other characterization of GPCR dimers at the level of physically isolated and identified heteropentamers is feasible with labeled agonists that do not dissociate upon solubilization. This is demonstrated with three neuropeptide Y (NPY) receptors and could apply to many receptors that use large peptidic agonists.
Collapse
|
5
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Zerbe O, Parker SL. Non-specific binding and general cross-reactivity of Y receptor agonists are correlated and should importantly depend on their acidic sectors. Peptides 2011; 32:258-65. [PMID: 21126552 PMCID: PMC3025077 DOI: 10.1016/j.peptides.2010.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
Non-specific binding of Y receptor agonists to intact CHO cells, and to CHO cell or rat brain particulates, is much greater for human neuropeptide Y (hNPY) compared to porcine peptide Y (pPYY), and especially relative to human pancreatic polypeptide (hPP). This binding of hNPY is reduced by alkali cations in preference to non-ionic chaotrope urea, while the much lower non-specific binding of pPYY is more sensitive to urea. The difference could mainly be due to the 10-16 stretch in 36-residue Y agonists (residues 8-14 in N-terminally clipped 34-peptides), located in the sector that contains all acidic residues of physiological Y agonists. Anionic pairs containing aspartate in the 10-16 zone could be principally responsible for non-specific attachments, but may also aid the receptor site binding. Two such pairs are found in hNPY, one in pPYY, and none in hPP. The hydroxyl amino acid residue at position 13 in mammalian PYY and PP molecules could lower conformational plasticity and the non-selective binding via intrachain hydrogen bonding. The acidity of this tract could also be important in agonist selectivity of the Y receptor subtypes. The differences point to an evolutionary reduction of promiscuous protein binding from NPY to PP, and should also be important for Y agonist selectivity within NPY receptor group, and correlate with partial agonism and out-of group cross-reactivity with other receptors.
Collapse
Affiliation(s)
- M. S. Parker
- Department. of Molecular Cell Sciences, Univ. of Memphis, Memphis, TN 38152, USA
| | - R. Sah
- Department of Surgery, Univ. of Cincinnati, Cincinnati, OH 45267, USA
| | - A. Balasubramaniam
- Department of Psychiatry, Univ. of Cincinnati, Cincinnati, OH 45267, USA
| | - F. R. Sallee
- Department of Surgery, Univ. of Cincinnati, Cincinnati, OH 45267, USA
| | - O. Zerbe
- Department of Organic Chemistry, Univ. of Basel, Basel, CH-8057, Switzerland
| | - S. L. Parker
- Department of Pharmacology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
- Corresponding author at: Department of Pharmacology, UTHSC Memphis, Memphis TN 38163, USA,
| |
Collapse
|
6
|
Estes AM, McAllen K, Parker MS, Sah R, Sweatman T, Park EA, Balasubramaniam A, Sallee FR, Walker MW, Parker SL. Maintenance of Y receptor dimers in epithelial cells depends on interaction with G-protein heterotrimers. Amino Acids 2010; 40:371-80. [DOI: 10.1007/s00726-010-0642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/25/2010] [Indexed: 12/01/2022]
|
7
|
Ziemek R, Schneider E, Kraus A, Cabrele C, Beck-Sickinger AG, Bernhardt G, Buschauer A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y Y4Receptor by Flow Cytometry and Aequorin Luminescence. J Recept Signal Transduct Res 2008; 27:217-33. [PMID: 17885919 DOI: 10.1080/10799890701505206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fluorescence-labeled neuropeptide Y (NPY) has been used in flow cytometric binding assays for the determination of affinity constants of NPY Y1, Y2, and Y5 receptor ligands. Because the binding of fluorescent NPY is insufficient for competition studies at the human Y4 receptor (hY4R), we replaced Glu-4 in hPP with Lys for the derivatization with cyanine-5. Because cy5-[K(4)]hPP has high affinity (Kd 5.6 nM) to the hY4R, it was used as a probe in a flow cytometric binding assay. Specific binding of cy5-[K(4)]hPP to hY4R was visualized by confocal microscopy. The hY(4)R, the chimeric G protein G(qi5) and mitochondrially targeted apoaequorin were stably coexpressed in CHO cells. Aequorin luminescence was quantified in a microplate reader and by a CCD camera. By application of these methods 3-cyclohexyl-N-[(3-1H-imidazol-4-ylpropylamino)(imino)methyl]propanamide (UR-AK49) was discovered as the first nonpeptidic Y4R antagonist (pKi 4.17), a lead to be optimized in terms of potency and selectivity.
Collapse
Affiliation(s)
- Ralf Ziemek
- Institut für Pharmazie, Universität Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Böhme I, Stichel J, Walther C, Mörl K, Beck-Sickinger AG. Agonist induced receptor internalization of neuropeptide Y receptor subtypes depends on third intracellular loop and C-terminus. Cell Signal 2008; 20:1740-9. [DOI: 10.1016/j.cellsig.2008.05.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
9
|
Estes A, Wong Y, Parker M, Sallee F, Balasubramaniam A, Parker S. Neuropeptide Y (NPY) Y2 receptors of rabbit kidney cortex are largely dimeric. ACTA ACUST UNITED AC 2008; 150:88-94. [DOI: 10.1016/j.regpep.2008.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/28/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
|
10
|
Parker SL, Parker MS, Wong YY, Sah R, Balasubramaniam A, Sallee F. Importance of a N-terminal aspartate in the internalization of the neuropeptide Y Y2 receptor. Eur J Pharmacol 2008; 594:26-31. [PMID: 18700141 DOI: 10.1016/j.ejphar.2008.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 07/14/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
With human neuropeptide Y Y2 receptor expressed in the Chinese hamster ovary (CHO) cells, the Asp35Ala mutation, and especially the change of Pro34Asp35 to Ala34Ala35, decrease the compartmentalization and strongly accelerate internalization of the receptor. These changes are not associated with alterations in agonist affinity, G-protein interaction, dimerization, or level of expression of the mutated receptors relative to the wildtype receptor. The proline-flanked aspartate in the N-terminal extracellular segment of the neuropeptide Y Y2 receptor thus apparently has a large role in anchoring and compartmentalization of the receptor. However, the Pro34Ala mutation does not significantly affect the embedding and cycling of the receptor.
Collapse
Affiliation(s)
- Steven L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
12
|
Parker SL, Parker MS, Sallee FR, Balasubramaniam A. Oligomerization of neuropeptide Y (NPY) Y2 receptors in CHO cells depends on functional pertussis toxin-sensitive G-proteins. ACTA ACUST UNITED AC 2007; 144:72-81. [PMID: 17651824 PMCID: PMC4387131 DOI: 10.1016/j.regpep.2007.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/27/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
Human neuropeptide Y Y2 receptors expressed in CHO cells are largely oligomeric, and upon solubilization are recovered by density gradient centrifugation as approximately 180 kDa complexes of receptor dimers and G-protein heterotrimers. A large fraction of the receptors is inactivated in the presence of pertussis toxin, in parallel with inactivation of Gi alpha subunits (with half-periods of about 4 h for both). This is accompanied by a very long-lasting loss of receptor dimers and of masked surface Y2 sites (an apparent receptor reserve pre-coupled mainly to Gi alpha subunit-containing G-proteins). However, surface Y2 receptors accessible to large peptide agonists are much less sensitive to the toxin. All surface Y2 receptors are rapidly blocked by Y2 antagonist BIIE0246, with a significant loss of the dimers, but with little change of basal Gi activity. However, both dimers and Y2 receptor compartmentalization are restored within 24 h after removal of the antagonist. In CHO cells, the maintenance and organization of Y2 receptors appear to critically depend on functional pertussis toxin-sensitive G-proteins.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
13
|
Böhme I, Mörl K, Bamming D, Meyer C, Beck-Sickinger AG. Tracking of human Y receptors in living cells--a fluorescence approach. Peptides 2007; 28:226-34. [PMID: 17207557 DOI: 10.1016/j.peptides.2006.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 08/20/2006] [Indexed: 11/25/2022]
Abstract
Non-invasive methods for studying biological processes in living cells have become very important, also in the field of GPCR biochemistry. Great advancements in the application of fluorescence techniques as well as in the development and improvement of novel fluorophores allow the visualization of dynamic processes. Using these technologies, problems concerning receptor biosynthesis, internalization, recycling and degradation can be investigated. Here we compare the application of the different fluorescent tags EYFP, Lumiotrade mark and SNAPtrade mark to track hY(1) and hY(5) receptors in living cells.
Collapse
Affiliation(s)
- Ilka Böhme
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
14
|
Parker SL, Parker MS, Sah R, Balasubramaniam A, Sallee FR. Self-regulation of agonist activity at the Y receptors. Peptides 2007; 28:203-13. [PMID: 17194507 DOI: 10.1016/j.peptides.2006.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/29/2006] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y (NPY) is one of the most abundant neuropeptides, and is likely to be present at nanomolar levels over extended periods in the synaptic space of many forebrain areas. This might be linked to an evolved generalized toning activity through a number of other peptide receptors that use C-terminally amidated agonists (with LHRH and orexin receptors and GIR as examples). However, the Y1 and Y2 receptors (which constitute the bulk of Y receptors active in the neural matrix) possess subnanomolar affinities that, at saturating NPY levels, could produce excessive signaling, as well as receptor losses via repeated endocytosis. The related Y4 receptor shows an even higher agonist affinity, and faces the same problem in visceral and neural locations accessible to pancreatic polypeptide (PP). An examination of agonist peptide interaction with Y receptors shows that Y1 and Y4 receptors in particular (as located on either the intact cells, or on particulates derived from various cell types) develop a blockade dependent on ligand concentration, with the blocking ranks of [NPY]>>[peptide YY] (PYY) for the Y1, and [human PP]>>>[PYY-related Y4 agonist] for the Y4 receptor. This blockade is also echoed in a concentration-related reduction in biological activity of primary agonists (NPY and PP), resembling a partial agonism, and is influenced especially by the allosteric interactivity of agonists. With the Y2 receptor, the blocking by agonists is less pronounced, but the signaling by NPY-related peptides is apparently less than with PYY-related agonists. The extended occupancy and self-attenuation of primary agonist activity at Y receptors could represent an evolutionary solution contributing to a balancing of metabolic signaling, agonist clearance and receptor conservation.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
15
|
Parallel inactivation of Y2 receptor and G-proteins in CHO cells by pertussis toxin. ACTA ACUST UNITED AC 2006; 139:128-35. [PMID: 17175038 DOI: 10.1016/j.regpep.2006.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Accepted: 10/22/2006] [Indexed: 02/04/2023]
Abstract
The Y(2) receptor for neuropeptide Y (NPY) interacts with pertussis toxin (PTX)-sensitive G-proteins, but little is known about interdependence of their levels and functions. We found that PTX reduces Y(2) receptors expressed in CHO cells in parallel to inactivation of Gi G-proteins, to loss of inhibition by Y(2) agonists of forskolin-stimulated adenylyl cyclase, and to decrease in the binding of GTP-gamma-S. These losses were attenuated by the endosome alkalinizer ammonium chloride. Affinity of the Y(2) receptor was not changed by PTX treatment. Prolonged treatment induced a large decrease of Y(2) receptor immunoreactivity (more than 70% in 48 h). The Gi(3) alpha-subunit immunoreactivity decreased slowly (about 46% in 48 h). There was a significant increase in Gq alpha immunoreactivity and in fraction of Y(2) binding sensitive to a Gq-selective antagonist. Possibly linked to that, the surface Y(2) sites and the internalization of the Y(2) receptor were less than 40% reduced. However, the abundant masked Y(2) sites were eliminated by the toxin, and could be mainly coupled to PTX-sensitive G-proteins.
Collapse
|
16
|
Yahya A, Xiao C, Chance WT, Sheriff S. Up-regulation of neuropeptide Y Y4 receptor mRNA expression in the brainstem of refed rats following 48 h of food deprivation: effect of leptin. Peptides 2006; 27:2731-7. [PMID: 16950545 DOI: 10.1016/j.peptides.2006.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) Y4 receptor (Y4R) in rat brainstem has been implicated in the signaling of satiety. In this study, we investigated the effects of leptin, and refeeding-induced satiety on Y4R mRNA expression in rat brainstem. Y4R receptor-specific primers were used to amplify the mRNA obtained from hypothalamus and brainstem utilizing conventional RT-PCR and quantitative real-time RT-PCR. No PCR product for Y4R was obtained from entire hypothalamic mRNA. Real-time RT-PCR showed a significant two-fold increase in the relative quantity of Y4R mRNA in brainstem of refed rats in comparison to food deprived or ad lib fed rats. Consistently, plasma leptin level was elevated in refed rats in comparison to food deprived rats. Similarly, leptin-treated rats exhibited a significant increase in Y4R mRNA in brainstem as compared to saline-injected rats. Plasma leptin was significantly elevated in leptin-treated rats. These results suggest that refeeding stimulates the expression of Y4R gene in the brainstem and that leptin may be one of the peripheral factors involved in this anorectic signaling mechanism.
Collapse
Affiliation(s)
- Ayesha Yahya
- College of Medicine, Department of Surgery, 231 Albert Sabin Way, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
17
|
Balasubramaniam A, Mullins DE, Lin S, Zhai W, Tao Z, Dhawan VC, Guzzi M, Knittel JJ, Slack K, Herzog H, Parker EM. Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY(32-36): development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem 2006; 49:2661-5. [PMID: 16610810 DOI: 10.1021/jm050907d] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown [Cys-Trp-Arg-Nva-Arg-Tyr-NH(2)](2), 1, to be a moderately selective neuropeptide Y (NPY) Y(4) receptor agonist. Toward improving the selectivity and potency for Y(4) receptors, we studied the effects of dimerizing H-Trp-Arg-Nva-Arg-Tyr-NH(2) using various diamino-dicarboxylic acids containing either di-, tri-, or tetramethylene spacers. These parallel dimers, 2A, 2B, 3, 4A, and 4B, and the corresponding linear tandem dimer and trimer analogues, 5 and 6, had enhanced selectivity and affinity for Y(4) receptors compared to 1 (Table 1). Substitution of Trp and Nva with Tyr and Leu, respectively, as in 2,7-d/l-diaminosuberic acid derivatized dimer, 7, resulted in a superior Y(4) selective agonist with picomolar affinity. Intraperitoneal (ip) injection of 7 potently inhibited food intake in fasted mice. Moreover, 7 (ip) inhibited the food intake in wild-type mice and not in Y(4)(-/-) knock-out mice, confirming that the actions of 7 on food intake are not due to global effects, but specifically mediated Y(4) receptors.
Collapse
Affiliation(s)
- Ambikaipakan Balasubramaniam
- Division of Gastrointestinal Hormones, Department of Surgery and Interdisciplinary Neurosciences Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|