1
|
He Y, Koido M, Sutoh Y, Shi M, Otsuka-Yamasaki Y, Munter HM, Morisaki T, Nagai A, Murakami Y, Tanikawa C, Hachiya T, Matsuda K, Shimizu A, Kamatani Y. East Asian-specific and cross-ancestry genome-wide meta-analyses provide mechanistic insights into peptic ulcer disease. Nat Genet 2023; 55:2129-2138. [PMID: 38036781 PMCID: PMC10703676 DOI: 10.1038/s41588-023-01569-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Peptic ulcer disease (PUD) refers to acid-induced injury of the digestive tract, occurring mainly in the stomach (gastric ulcer (GU)) or duodenum (duodenal ulcer (DU)). In the present study, we conducted a large-scale, cross-ancestry meta-analysis of PUD combining genome-wide association studies with Japanese and European studies (52,032 cases and 905,344 controls), and discovered 25 new loci highly concordant across ancestries. An examination of GU and DU genetic architecture demonstrated that GUs shared the same risk loci as DUs, although with smaller genetic effect sizes and higher polygenicity than DUs, indicating higher heterogeneity of GUs. Helicobacter pylori (HP)-stratified analysis found an HP-related host genetic locus. Integrative analyses using bulk and single-cell transcriptome profiles highlighted the genetic factors of PUD being enriched in the highly expressed genes in stomach tissues, especially in somatostatin-producing D cells. Our results provide genetic evidence that gastrointestinal cell differentiations and hormone regulations are critical in PUD etiology.
Collapse
Affiliation(s)
- Yunye He
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Koido
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Mingyang Shi
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hans Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine and Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Takayuki Morisaki
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Nagai
- Department of Public Policy, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Occurrences and phenotypes of RIPK3-positive gastric cells in Helicobacter pylori infected gastritis and atrophic lesions. Dig Liver Dis 2022; 54:1342-1349. [PMID: 35514018 DOI: 10.1016/j.dld.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Research evidences suggest that diverse forms of programmed cell death (PCD) are involved in the helicobacter pylori (H. pylori)-induced gastric inflammation and disorders. AIMS To characterize occurrences and phenotypes of necroptosis in gastric cells in H. pylori infected gastritis and atrophic specimens. METHODS Occurrences and phenotypes of necroptosis in gastric cells were immunohistochemically characterized with receptor-interacting protein kinase 3 (RIPK3) antibody in both human H. pylori infected gastric gastritis, atrophic specimens, and transgenic mice. RESULTS Increased populations of RIPK3-positive cells were observed in both gastric glands and lamina propria in H. pylori infected human oxyntic gastritis and atrophic specimens. Phenotypic analysis revealed that many RIPK3-positive cells were H + K+ ATPase-positive parietal cells in the gastric glands and were predominantly CD3-positive T lymphocytes, CD68-positive macrophages, and SMA-alpha-positive stromal cells in the lamina propria. Furthermore, we found an increased expression of RIPK3-positive gastric glandular cells along with the histological process of hyperplasia-atrophy-dysplasia progression in hypergastrinemic INS-GAS mice. CONCLUSIONS An increased population of RIPK3-positive cells was observed in several types of gastric cells, future studies that define the effects and mechanisms of PCD implicated in the development of H. pylori induced gastric disorders are needed.
Collapse
|
3
|
Zeng Q, Ou L, Wang W, Guo DY. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front Endocrinol (Lausanne) 2020; 11:112. [PMID: 32210918 PMCID: PMC7067705 DOI: 10.3389/fendo.2020.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Lei Ou
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Wei Wang
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- Dong-Yu Guo
| |
Collapse
|
4
|
Fossmark R, Rao S, Mjønes P, Munkvold B, Flatberg A, Varro A, Thommesen L, Nørsett KG. PAI-1 deficiency increases the trophic effects of hypergastrinemia in the gastric corpus mucosa. Peptides 2016; 79:83-94. [PMID: 27038741 DOI: 10.1016/j.peptides.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/16/2022]
Abstract
The gastric hormone gastrin plays a role in organizing the gastric mucosa. Gastrin also regulates the expression of genes that have important actions in extracellular matrix modelling, including plasminogen activator inhibitor (PAI)-1 which is part of the urokinase plasminogen activator (uPA) system. The uPA system (including PAI-1) is associated with cancer progression, fibrosis and thrombosis. Its biological role in the stomach and molecular mechanisms of action are not well understood. The aim of this study was to examine the effect of PAI-1 on the trophic changes observed in gastric corpus mucosa in hypergastrinemia using PAI-1 and/or HK-ATPase beta subunit knockout (KO) mice. HK-ATPase beta subunit KO mice were used as a model of hypergastrinemia. In 12 month old female mice, intragastric acidity and plasma gastrin were measured. The stomachs were examined for macroscopic and histological changes. In mice null for both PAI-1 and HK-ATPase beta (double KO), there was exaggerated hypergastrinemia, increased stomach weight and corpus mucosal thickness, and more pronounced trophic and architectural changes in the corpus compared with HK-ATPase beta KO mice. Genome-wide microarray expression data for the gastric corpus mucosa showed a distinct gene expression profile for the HK-ATPase beta KO mice; moreover, enrichment analysis revealed changes in expression of genes regulating intracellular processes including cytoskeleton remodelling, cell adhesion, signal transduction and epithelial-to-mesenchymal transition (EMT). Genes differentially expressed in the double KO compared with HK-ATPase beta KO mice included the transcription factor Barx2 and the chromatin remodeler gene Tet2, which may be involved in both normal gastric physiology and development of gastric cancer. Based on the present data, we suggest that PAI-1 plays a role in maintaining gastric mucosal organization in hypergastrinemia.
Collapse
Affiliation(s)
- Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway; Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway.
| | - Patricia Mjønes
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway; Department of Pathology, St. Olav's University Hospital, Trondheim, Norway.
| | - Bjørn Munkvold
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway.
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway.
| | - Andrea Varro
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway.
| | - Kristin G Nørsett
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway; The Central Norway Regional Health Authority, Trondheim, Norway.
| |
Collapse
|
5
|
Duckworth CA, Abuderman AA, Burkitt MD, Williams JM, O'Reilly LA, Pritchard DM. bak deletion stimulates gastric epithelial proliferation and enhances Helicobacter felis-induced gastric atrophy and dysplasia in mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G420-30. [PMID: 26159699 PMCID: PMC4572407 DOI: 10.1152/ajpgi.00404.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/01/2015] [Indexed: 01/31/2023]
Abstract
Helicobacter infection causes a chronic superficial gastritis that in some cases progresses via atrophic gastritis to adenocarcinoma. Proapoptotic bak has been shown to regulate radiation-induced apoptosis in the stomach and colon and also susceptibility to colorectal carcinogenesis in vivo. Therefore we investigated the gastric mucosal pathology following H. felis infection in bak-null mice at 6 or 48 wk postinfection. Primary gastric gland culture from bak-null mice was also used to assess the effects of bak deletion on IFN-γ-, TNF-α-, or IL-1β-induced apoptosis. bak-null gastric corpus glands were longer, had increased epithelial Ki-67 expression, and contained fewer parietal and enteroendocrine cells compared with the wild type (wt). In wt mice, bak was expressed at the luminal surface of gastric corpus glands, and this increased 2 wk post-H. felis infection. Apoptotic cell numbers were decreased in bak-null corpus 6 and 48 wk following infection and in primary gland cultures following cytokine administration. Increased gastric epithelial Ki-67 labeling index was observed in C57BL/6 mice after H. felis infection, whereas no such increase was detected in bak-null mice. More severe gastric atrophy was observed in bak-null compared with C57BL/6 mice 6 and 48 wk postinfection, and 76% of bak-null compared with 25% of C57BL/6 mice showed evidence of gastric dysplasia following long-term infection. Collectively, bak therefore regulates gastric epithelial cell apoptosis, proliferation, differentiation, mucosal thickness, and susceptibility to gastric atrophy and dysplasia following H. felis infection.
Collapse
Affiliation(s)
- C. A. Duckworth
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - A. A. Abuderman
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - M. D. Burkitt
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - J. M. Williams
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - L. A. O'Reilly
- 2The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and ,3Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - D. M. Pritchard
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| |
Collapse
|
6
|
A network map of the gastrin signaling pathway. J Cell Commun Signal 2014; 8:165-70. [PMID: 24584707 DOI: 10.1007/s12079-014-0224-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
|
7
|
Abstract
Since its discovery in 1982, the global importance of Helicobacter pylori-induced disease, particularly in developing countries, remains high. The use of rodent models, particularly mice, and the unanticipated usefulness of the gerbil to study H. pylori pathogenesis have been used extensively to study the interactions of the host, the pathogen, and the environmental conditions influencing the outcome of persistent H. pylori infection. Dietary factors in humans are increasingly recognized as being important factors in modulating progression and severity of H. pylori-induced gastric cancer. Studies using rodent models to verify and help explain mechanisms whereby various dietary ingredients impact disease outcome should continue to be extremely productive.
Collapse
Affiliation(s)
- James G. Fox
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
8
|
Effect of Helicobacter pylori on the mucosa of the lower end of the esophagus in induced chronic gastritis in adult albino rats. THE EGYPTIAN JOURNAL OF HISTOLOGY 2013. [DOI: 10.1097/01.ehx.0000426164.72726.a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Hayakawa Y, Fox JG, Gonda T, Worthley DL, Muthupalani S, Wang TC. Mouse models of gastric cancer. Cancers (Basel) 2013; 5:92-130. [PMID: 24216700 PMCID: PMC3730302 DOI: 10.3390/cancers5010092] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Singh P, Sarkar S, Kantara C, Maxwell C. Progastrin Peptides Increase the Risk of Developing Colonic Tumors: Impact on Colonic Stem Cells. CURRENT COLORECTAL CANCER REPORTS 2012; 8:277-289. [PMID: 23226720 DOI: 10.1007/s11888-012-0144-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pre-neoplastic lesions (ACF, aberrant-crypt-foci; Hp, hyperplastic/dysplastic polyps) are believed to be precursors of sporadic colorectal-tumors (Ad, adenomas; AdCA, adenocarcinomas). ACF/Hp likely originate due to abnormal growth of colonic-crypts in response to aberrant queues in the microenvironment of colonic-crypts. Thus identifying factors which regulate homeostatic vs aberrant proliferation/apoptosis of colonocytes, especially stem/progenitor cells, may lead to effective preventative/treatment strategies. Based on this philosophy, role of growth-factors/peptide-hormones, potentially available in the circulation/microenvironment of colonic-crypts is being examined extensively. Since the time gastrins were discovered as trophic (growth) factors for gastrointestinal-cells, the effect of gastrins on the growth of normal/cancer cells has been investigated, leading to many discoveries. Seminal discoveries made in the area of gastrins and colon-cancer, as it relates to molecular pathways associated with formation of colonic tumors will be reviewed, and possible impact on diagnostic/preventative/treatment strategies will be discussed.
Collapse
Affiliation(s)
- Pomila Singh
- Department of Neuroscience and Cell Biology, UTMB, Galveston TX 77555
| | | | | | | |
Collapse
|
11
|
Zorzetto V, Maddalo G, Basso D, Farinati F. Immunotherapy for gastric premalignant lesions and cancer. Immunotherapy 2012; 4:587-99. [PMID: 22788127 DOI: 10.2217/imt.12.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Sarkar S, Swiercz R, Kantara C, Hajjar KA, Singh P. Annexin A2 mediates up-regulation of NF-κB, β-catenin, and stem cell in response to progastrin in mice and HEK-293 cells. Gastroenterology 2011; 140:583-595.e4. [PMID: 20826156 PMCID: PMC3031715 DOI: 10.1053/j.gastro.2010.08.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/26/2010] [Accepted: 08/26/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Prograstrin induces proliferation in colon crypts by activating p65nuclear factor-κB (NF-κB) (p65) and β-catenin. We investigated whether Annexin A2 (AnxA2), a progastrin receptor, activates NF-κB and β-catenin in vivo. METHODS ANXA2-null (ANXA2(-/-)) and wild-type (ANXA2(+/+)) mice were studied, along with clones of progastrin-responsive HEK-293 cells that stably expressed full-length progastrin (HEK-mGAS) or an empty vector (HEK-C). Small interfering RNA was used to down-regulate AnxA2, p65NF-κB, and β-catenin in cells. RESULTS Proliferation and activation of p65 and β-catenin increased significantly in HEK-mGAS compared with HEK-C clones. HEK-mGAS cells had a 2- to 4-fold increase in relative levels of c-Myc, cyclooxygenase (COX)-2, CyclinD1, double cortin CAM kinase-like 1 (DCAMKL+1), and CD44, compared with HEK-C clones. Down-regulation of AnxA2 in HEK-mGAS clones reduced activation of NF-κB and β-catenin, as well as levels of DCAMKL+1. Surprisingly, down-regulation of β-catenin had no effect on activation of p65NF-κB, whereas down-regulation of p65 significantly reduced activation of β-catenin in HEK-mGAS clones. Loss of either p65 or β-catenin significantly reduced proliferation of HEK-mGAS clones, indicating that both factors are required for the proliferative effects of progastrin. Lengths of colon crypts and levels of p65, β-catenin, DCAMKL+1, and CD44 were significantly higher in ANXA2(+/+) mice compared with either ANXA2(-/-) mice given progastrin or ANXA2(+/+) and ANXA2(-/-) mice given saline. CONCLUSIONS AnxA2 expression is required for the biologic effects of progastrin in vivo and in vitro and mediates the stimulatory effect of progastrin on p65NF-κ, β-catenin, and the putative stem cell markers DCAMKL+1 and CD44. AnxA2 might therefore mediate the hyperproliferative and cocarcinogenic effects of progastrin.
Collapse
Affiliation(s)
- Shubhashish Sarkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rafal Swiercz
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Carla Kantara
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Katherine A Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
13
|
Gastritis induced by Helicobacter pylori infection in experimental rats. Dig Dis Sci 2010; 55:2770-7. [PMID: 20094782 DOI: 10.1007/s10620-009-1103-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 12/10/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastritis, an inflammation of gastric mucosa, may be due to many pathological factors and infection, such as with Helicobacter pylori. The use of experimental models of gastritis is important to evaluate the biochemical changes and study chemotherapeutic intervention. In a previous study we demonstrated an acute gastritis model induced by iodoacetamide. AIMS Our objective in this study was to evaluate a new gastritis model induced by H. pylori infection in experimental rats in terms of certain biomarkers in serum and mucosal tissues in addition to histopathological examination. METHODS Gastritis was induced in 20 albino Wistar rats by H. pylori isolated from antral biopsy taken from a 49-year-old male patient endoscopically diagnosed as having H. pylori infection. Another ten rats were used as controls. Serum gastrin, pepsinogen I activity, interleukin-6 (IL-6) and gastric mucosal myeloperoxidase (MPO) activity and prostaglandin E(2) (PGE(2)) were measured. Immunostaining for inducible nitric oxide synthase (iNOS), nitrotyrosine and DNA fragmentation were used to further evaluate H. pylori-induced gastritis. RESULTS Serum gastrin, IL-6, mucosal MPO activity, and PGE(2) demonstrated significant increases joined with a decreased serum pepsinogen I activity (P < 0.001). Immunohistochemistry demonstrated positive reaction for iNOS, nitrotyrosine and DNA fragmentation. CONCLUSIONS Helicobacter pylori-induced gastritis models demonstrated massive oxidative stress and pronounced injury in mucosal tissue. Since our model in rats reflected the clinical picture of H. pylori infection, it can be considered as a consistent model to study chemotherapeutic intervention for this type of gastritis.
Collapse
|
14
|
Tian H, Zhang N, Suo WH, Wang T, Song LJ, Wu J, Liu Q, Shen WW, Fu GH. Gastrin suppresses the interdependent expression of p16 and anion exchanger 1 favoring growth inhibition of gastric cancer cells. Int J Cancer 2010; 127:1462-74. [PMID: 20020491 DOI: 10.1002/ijc.25124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Our previous studies demonstrated that expression and interaction of p16 with anion exchanger 1 (AE1) in gastric cancer cells is correlated with progression and shorter survival of the cancer. In this article, the effects of gastrin on p16 and AE1 and its implication in prevention and treatment of gastric cancer were studied by molecular biology techniques, animal experiment and clinical analysis. The results showed that expression of p16 in human gastric body carcinoma was downregulated along with the progression of the cancer, suggesting the reverse correlations between gastrin and p16 in vivo. Further experiments indicated that gastrin suppressed the expression of p16 via the p16 promoter and thereafter resulted in the degradation of AE1 in gastric cancer cells. Silencing of AE1 or p16 significantly inhibited the proliferation of the cancer cells. Using a xenograft tumor model in nude mice, we showed that experimental systemic hypergastrinemia induced by the administration of omeprazole led to decreased expression of AE1 and p16 as well as to a marked growth inhibition of SGC7901 tumors. It is concluded that a moderate plasma gastrin level is beneficial to the growth inhibition of gastric cancer by suppressing the expression of AE1 and p16. This finding may have an important implication for the prevention and treatment of cancers arise in the gastric antrum.
Collapse
Affiliation(s)
- Hua Tian
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Patel O, Marshall KM, Bramante G, Baldwin GS, Shulkes A. The C-terminal flanking peptide (CTFP) of progastrin inhibits apoptosis via a PI3-kinase-dependent pathway. ACTA ACUST UNITED AC 2010; 165:224-31. [PMID: 20727916 DOI: 10.1016/j.regpep.2010.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/26/2010] [Accepted: 08/11/2010] [Indexed: 12/22/2022]
Abstract
Progastrin is processed to a number of peptides including glycine-extended gastrin, amidated gastrin and the C-terminal flanking peptide (CTFP). Progastrin and gastrin-gly are pro-proliferative and anti-apoptotic in gastric and colorectal cancer cell lines. The CTFP is a major form of progastrin in the stomach and colon and stimulates proliferation. However the effect of CTFP on apoptosis has not been examined. Using the human gastric carcinoma cell line AGS we show that CTFP attenuates apoptosis through a PI3-kinase pathway by stimulating the phosphorylation of Akt leading to sustained increases in the concentrations of Bcl-xL and phosphorylated Bad protein and by reducing caspase 3 activity. The anti-apoptotic effect represents an important potential mechanism for the growth promoting action of CTFP.
Collapse
Affiliation(s)
- Oneel Patel
- Department of Surgery, University of Melbourne Austin Health, Melbourne, Victoria 3084, Australia
| | | | | | | | | |
Collapse
|
16
|
Abstract
The proton pump inhibitors (PPIs) as a class are remarkably safe and effective for persons with peptic ulcer disorders. Serious adverse events are extremely rare for PPIs, with case reports of interstitial nephritis with omeprazole, hepatitis with omeprazole and lansoprazole, and disputed visual disturbances with pantoprazole and omeprazole. PPI use is associated with the development of fundic gland polyps (FGP); stopping PPIs is associated with regression of FGP. In the absence of Helicobacter pylori infection, the long-term use of PPIs has not been convincingly proven to cause or be associated with the progression of pre-existing chronic gastritis or gastric atrophy or intestinal metaplasia. Mild/modest hypergastrinemia is a physiological response to the reduction in gastric acid secretion due to any cause. The long-term use of PPIs has not been convincingly proven to cause enterochromaffin-like cell hyperplasia or carcinoid tumors. PPIs increase the risk of community acquired pneumonia, but not of hospital acquired (nosocomial) pneumonia. There is no data to support particular care in prescribing PPI therapy due to concerns about risk of hip fracture with the long-term use of PPIs. Long-term use of PPIs does not lead to vitamin B12 deficiencies, except possibly in the elderly, or in persons with Zollinger-Ellison Syndrome who are on high doses of PPI for prolonged periods of time. There is no convincingly proven data that PPIs increase the risk of Clostridium difficile-associated diarrhea in persons in the community. The discontinuation of PPIs may result in rebound symptoms requiring further and even continuous PPI use for suppression of symptoms. As with all medications, the key is to use PPIs only when clearly indicated, and to reassess continued use so that long-term therapy is used judiciously. Thus, in summary, the PPIs are a safe class of medications to use long-term in persons in whom there is a clear need for the maintenance of extensive acid inhibition.
Collapse
|
17
|
Ibiza S, Alvarez A, Romero W, Barrachina MD, Esplugues JV, Calatayud S. Gastrin induces the interaction between human mononuclear leukocytes and endothelial cells through the endothelial expression of P-selectin and VCAM-1. Am J Physiol Cell Physiol 2009; 297:C1588-95. [PMID: 19812370 DOI: 10.1152/ajpcell.00082.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gastric mucosal inflammation is frequently associated with hypergastrinemia, and a correlation exists between the level of gastrin and degree of gastritis. We have previously observed that gastrin promotes leukocyte-endothelial interactions and contributes to Helicobacter-induced inflammation in the rat mesentery. In the present study, we aimed to evaluate a possible proinflammatory activity of gastrin in humans. The interaction between human leukocytes [U-937 cells, peripheral blood polymorphonuclear (PMN), and peripheral blood mononuclear (PBMC) cells] and human umbilical vein endothelial cells (HUVEC) was analyzed in static and dynamic conditions. The endothelial expression of adhesion molecules [P-selectin, E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule (VCAM)-1] was analyzed by flow cytometry and fluorescent microscopy screening. Gastrin increased the static adhesion of U-937 cells to HUVEC (1 h; 10(-9) M: 122 +/- 9%; 10(-8) M: 143 +/- 17%; 10(-7) M: 162 +/- 14% vs. control, all P < 0.05). Incubation of HUVEC with gastrin (4 h) also increased PBMC rolling (vehicle: 63 +/- 12; 10(-9) M: 109 +/- 29; 10(-8) M: 141 +/- 24; 10(-7) M: 261 +/- 16 leukocytes/min, P < 0.05) and adhesion (vehicle: 3 +/- 2, 10(-9) M: 11 +/- 4, 10(-8) M: 17 +/- 5, 10(-7) M: 15 +/- 5 leukocytes/mm(2), all P < 0.05) in the parallel-plate flow chamber. Treatment of PBMC with gastrin had no effects. The cholecystokinin (CCK)-2 receptor antagonist (L-365,260, 10(-7) M) prevented the effects of gastrin. P-selectin and VCAM-1 expression were enhanced by gastrin, and neutralizing antibodies against these molecules prevented PBMC rolling and adhesion. Gastrin did not affect the interactions between HUVEC and PMN. Gastrin induces interactions between human mononuclear leukocytes and endothelial cells through the activation of CCK-2 receptors and the enhancement of endothelial P-selectin and VCAM-1.
Collapse
Affiliation(s)
- Sales Ibiza
- Departamento de Farmacología and CIBERehd, Universidad de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Jin G, Ramanathan V, Quante M, Baik GH, Yang X, Wang SSW, Tu S, Gordon SAK, Pritchard DM, Varro A, Shulkes A, Wang TC. Inactivating cholecystokinin-2 receptor inhibits progastrin-dependent colonic crypt fission, proliferation, and colorectal cancer in mice. J Clin Invest 2009; 119:2691-701. [PMID: 19652364 DOI: 10.1172/jci38918] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/03/2009] [Indexed: 02/06/2023] Open
Abstract
Hyperproliferation of the colonic epithelium, leading to expansion of colonic crypt progenitors, is a recognized risk factor for colorectal cancer. Overexpression of progastrin, a nonamidated and incompletely processed product of the gastrin gene, has been shown to induce colonic hyperproliferation and promote colorectal cancer in mice, but the mechanism of pathogenesis has not been defined. Cholecystokinin-2 receptor (CCK2R) is the primary receptor for cholecystokinin (CCK) and amidated gastrin. Here, we show that Cck2r was expressed in murine colonic crypts and upregulated in the transgenic mice that overexpress human progastrin. Murine deletion of Cck2r abrogated progastrin-dependent increases in colonic proliferation, mucosal thickness, and beta-catenin and CD44 expression in the colon tumor. In addition, either deletion or antagonism of Cck2r resulted in the inhibition of progastrin-dependent increases in progenitors expressing doublecortin and CaM kinase-like-1 (DCAMKL1), stem cells expressing leucine rich repeat-containing G protein-coupled receptor 5 (LgR5), and colonic crypt fission. Furthermore, in the azoxymethane mouse model of colorectal carcinogenesis, Cck2r deletion in human progastrin-overexpressing mice resulted in markedly decreased aberrant crypt foci formation and substantially reduced tumor size and multiplicity. Taken together, these observations indicate that progastrin induces proliferative effects, primarily in colonic progenitor cells, through a CCK2R-dependent pathway. Moreover, our data suggest that CCK2R may be a potential target in the treatment or prevention of colorectal cancer.
Collapse
Affiliation(s)
- Guangchun Jin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kabir S. Effect of Helicobacter pylori eradication on incidence of gastric cancer in human and animal models: underlying biochemical and molecular events. Helicobacter 2009; 14:159-71. [PMID: 19702845 DOI: 10.1111/j.1523-5378.2009.00677.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer remains one of the most common cancers worldwide. A strong association exists between Helicobacter pylori infection and the risk of developing noncardia gastric cancer. H. pylori eradication by antibiotic treatment is regarded as a primary chemoprevention strategy to reduce gastric cancer incidence. AIM To analyze the efficacy of H. pylori eradication in preventing gastric cancer in human and animal models, and to discuss whether biochemical, genetic, and epigenetic changes associated with H. pylori infection are reversible after curing the infection. RESULTS Several intervention trials have indicated that in some patients, H. pylori eradication leads to regression and prevents the progression of precancerous lesions. The eradication therapy reduces gastric cancer incidence in patients without any precancerous lesions at the baseline and is most effective before the development of atrophic gastritis. A few recent intervention studies in Japan have demonstrated significant prophylactic effects of eradication therapy on the development of gastric cancer, suggesting the use of eradication therapy in high-risk populations as a gastric cancer reduction strategy. However, gastric cancer may still develop despite successful eradication therapy. Studies in animal models have confirmed the use of eradication therapy at an early point of infection to prevent gastric cancer development. CONCLUSION H. pylori eradication may not completely abolish the risk of gastric cancer. However, eradication therapy may be used in high-risk populations to reduce gastric cancer incidence. It can reverse many biochemical, genetic, and epigenetic changes that H. pylori infection induces in the stomach.
Collapse
Affiliation(s)
- Shahjahan Kabir
- Academic Research and Information Management, Uppsala, Sweden.
| |
Collapse
|
20
|
Burkitt MD, Varro A, Pritchard DM. Importance of gastrin in the pathogenesis and treatment of gastric tumors. World J Gastroenterol 2009; 15:1-16. [PMID: 19115463 PMCID: PMC2653300 DOI: 10.3748/wjg.15.1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In addition to regulating acid secretion, the gastric antral hormone gastrin regulates several important cellular processes in the gastric epithelium including proliferation, apoptosis, migration, invasion, tissue remodelling and angiogenesis. Elevated serum concentrations of this hormone are caused by many conditions, particularly hypochlorhydria (as a result of autoimmune or Helicobacter pylori (H pylori)-induced chronic atrophic gastritis or acid suppressing drugs) and gastrin producing tumors (gastrinomas). There is now accumulating evidence that altered local and plasma concentrations of gastrin may play a role during the development of various gastric tumors. In the absence of H pylori infection, marked hypergastrinemia frequently results in the development of gastric enterochromaffin cell-like neuroendocrine tumors and surgery to remove the cause of hypergastrinemia may lead to tumor resolution in this condition. In animal models such as transgenic INS-GAS mice, hypergastrinemia has also been shown to act as a cofactor with Helicobacter infection during gastric adenocarcinoma development. However, it is currently unclear as to what extent gastrin also modulates human gastric adenocarcinoma development. Therapeutic approaches targeting hypergastrinemia, such as immunization with G17DT, have been evaluated for the treatment of gastric adenocarcinoma, with some promising results. Although the mild hypergastrinemia associated with proton pump inhibitor drug use has been shown to cause ECL-cell hyperplasia and to increase H pylori-induced gastric atrophy, there is currently no convincing evidence that this class of agents contributes towards the development of gastric neuroendocrine tumors or gastric adenocarcinomas in human subjects.
Collapse
|
21
|
Pritchard DM, Berry D, Przemeck SMC, Campbell F, Edwards SW, Varro A. Gastrin increases mcl-1 expression in type I gastric carcinoid tumors and a gastric epithelial cell line that expresses the CCK-2 receptor. Am J Physiol Gastrointest Liver Physiol 2008; 295:G798-805. [PMID: 18719002 PMCID: PMC2575912 DOI: 10.1152/ajpgi.00015.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevated serum concentrations of the hormone gastrin are associated with the development of gastric carcinoid tumors, but the mechanisms of tumor development are not fully understood. We hypothesized that the antiapoptotic effects of gastrin may be implicated and have therefore investigated the role of antiapoptotic members of the bcl-2 family of proteins. AGS-G(R) human gastric carcinoma cells stably transfected with the CCK-2 receptor were used to assess changes in the expression of bcl-2 family members following gastrin treatment and the function of mcl-1 during apoptosis was investigated by use of small-interfering RNA (siRNA). Treatment of AGS-G(R) cells with 10 nM gastrin for 6 h caused maximally increased mcl-1 protein abundance. Gastrin-induced mcl-1 expression was inhibited by the transcription inhibitor actinomycin D and by the protein synthesis inhibitor cycloheximide. Downstream signaling of mcl-1 expression occurred via the CCK-2 receptor, protein kinase C, and MAP kinase pathways, but not via PI 3-kinase. Transfection with mcl-1 siRNA significantly suppressed mcl-1 protein expression and abolished the antiapoptotic effects of gastrin on serum starvation-induced apoptosis. Mcl-1 protein expression was also specifically increased in the type I enterochromaffin-like cell carcinoid tumors of 10 patients with autoimmune atrophic gastritis and hypergastrinemia. Gastrin therefore signals via the CCK-2 receptor, protein kinase C, and MAP kinase to induce expression of antiapoptotic mcl-1 in AGS-G(R) cells, and mcl-1 expression is also increased in human hypergastrinemia-associated type I gastric carcinoid tumors. Gastrin-induced mcl-1 expression may therefore be an important mechanism contributing toward type I gastric carcinoid development.
Collapse
Affiliation(s)
- D. M. Pritchard
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - D. Berry
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S. M. C. Przemeck
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - F. Campbell
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S. W. Edwards
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - A. Varro
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool; Department of Pathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool; and School of Biological Sciences and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Jain RN, Al-Menhali AA, Keeley TM, Ren J, El-Zaatari M, Chen X, Merchant JL, Ross TS, Chew CS, Samuelson LC. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J Clin Invest 2008; 118:2459-70. [PMID: 18535670 DOI: 10.1172/jci33569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 04/30/2008] [Indexed: 11/17/2022] Open
Abstract
Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the gastric epithelium in Hip1r-deficient mice. Electron microscopy revealed abnormal apical canalicular membranes and loss of tubulovesicles in mutant parietal cells, suggesting that Hip1r is necessary for the normal trafficking of these secretory membranes. Accordingly, acid secretory dynamics were altered in mutant parietal cells, with enhanced activation and acid trapping, as measured in isolated gastric glands. At the whole-organ level, gastric acidity was reduced in Hip1r-deficient mice, and the gastric mucosa was grossly transformed, with fewer parietal cells due to enhanced apoptotic cell death and glandular hypertrophy associated with cellular transformation. Hip1r-deficient mice had increased expression of the gastric growth factor gastrin, and mice mutant for both gastrin and Hip1r exhibited normalization of both proliferation and gland height. Taken together, these studies demonstrate that Hip1r plays a significant role in gastric physiology, mucosal architecture, and secretory membrane dynamics in parietal cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|