1
|
Zahed MS, Alimohammadi S, Hassanpour S. Effect of intracerebroventricular (ICV) injection of adrenomedullin and its interaction with NPY and CCK pathways on food intake regulation in neonatal layer-type chicks. Poult Sci 2024; 103:103819. [PMID: 38772088 PMCID: PMC11131059 DOI: 10.1016/j.psj.2024.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Adrenomedullin has various physiological roles including appetite regulation. The objective of present study was to determine the effects of ICV injection of adrenomedullin and its interaction with NPY and CCK receptors on food intake regulation. In experiment 1, chickens received ICV injection of saline and adrenomedullin (1, 2, and 3 nmol). In experiment 2, birds injected with saline, B5063 (NPY1 receptor antagonist, 1.25 µg), adrenomedullin (3 nmol) and co-injection of B5063+adrenomedullin. Experiments 3 to 5 were similar to experiment 2 and only SF22 (NPY2 receptor antagonist, 1.25 µg), SML0891 (NPY5 receptor antagonist, 1.25 µg) and CCK4 (1 nmol) were injected instead of B5063. In experiment 6, ICV injection of saline and CCK8s (0.125, 0.25, and 0.5 nmol) were done. In experiment 7, chickens injected with saline, CCK8s (0.125 nmol), adrenomedullin (3 nmol) and co-injection of CCK8s+adrenomedullin. After ICV injection, birds were returned to their individual cages immediately and cumulative food intake was measured at 30, 60, and 120 min after injection. Adrenomedullin (2 and 3 nmol) decreased food intake compared to control group (P < 0.05). Coinjection of B5063+adrenomedullin amplified hypophagic effect of adrenomedullin (P < 0.05). The ICV injection of the CCK8s (0.25 and 0.5 nmol) reduced food intake (P < 0.05). Co-injection of the CCK8s+adrenomedullin significantly potentiated adrenomedullin-induced hypophagia (P < 0.05). Administration of the SF22, SML0891 and CCK4 had no effect on the anorexigenic response evoked by adrenomedullin (P > 0.05). These results suggested that the hypophagic effect of the adrenomedullin is mediated by NPY1 and CCK8s receptors. However, our novel results should form the basis for future experiments.
Collapse
Affiliation(s)
- Maryam Soleymani Zahed
- Section of Physiology, Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Samad Alimohammadi
- Section of Physiology, Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Shahin Hassanpour
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Saneyasu T, Ueno M, Nagata K, Kewan A, Honda K, Kamisoyama H. Central administration of insulin and refeeding lead to Akt and ERK phosphorylation in the chicken medulla. Neurosci Lett 2021; 758:136008. [PMID: 34098027 DOI: 10.1016/j.neulet.2021.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate whether medullary cellular signaling pathways contribute to feeding regulation in chickens. Fasting inhibited the phosphorylated protein and its rates of ERK but not Akt in the chicken medulla, while refeeding promoted Akt and ERK. Intraperitoneal administration of sulfate cholecystokinin 8 did not affect medullary Akt and ERK phosphorylation in chickens. Intracerebroventricular administration of insulin significantly induced the phosphorylation of Akt and ERK in the chicken medulla. These findings suggest that the medullary Akt and ERK pathways are involved in the appetite-suppressive pathway of insulin in chickens.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Mizuki Ueno
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kanami Nagata
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ahmed Kewan
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Zachar G, Montagnese C, Fazekas EA, Kemecsei RG, Papp SM, Dóra F, Renner É, Csillag A, Pogány Á, Dobolyi A. Brain Distribution and Sexually Dimorphic Expression of Amylin in Different Reproductive Stages of the Zebra Finch ( Taeniopygia guttata) Suggest Roles of the Neuropeptide in Song Learning and Social Behaviour. Front Neurosci 2020; 13:1401. [PMID: 32009882 PMCID: PMC6971405 DOI: 10.3389/fnins.2019.01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
The expression of the recently identified neuropeptide, amylin, is restricted in rodents to the postpartum preoptic area and may play a role in the control of parental behaviours and food intake. These processes are substantially different between bird and rodent parents as birds do not lactate but often show biparental care of the offspring. To establish the presence and role of amylin in the bird brain, in the present study, we investigated the distribution of amylin in brains of adult male and female zebra finches in three different reproductive stages (i.e. paired without young, incubating eggs or provisioning nestlings) and in unpaired control birds living in same sex flocks. Amylin mRNA was identified in the hypothalamus of zebra finch by RT-PCR, which was also used to produce probes for in situ hybridisation. Subsequently, in situ hybridisation histochemistry was performed in brain sections, and the labelling signal was quantified and compared between the groups. Amylin showed a much wider brain distribution than that of rodents. A strong and, in some regions, sexually dimorphic label was found in the striatum and several brain regions of the social behavioural network in both males and females. Many regions responsible for the learning of birdsong also contained amylin-positive neurons, and some regions showed sex differences reflecting the fact that vocalisation is sexually dimorphic in the zebra finch: only males sing. Area X (Ar.X), a striatal song centre present only in males, was labelled in paired but not unpaired male. Ar.X, another song centre, the lateral part of the magnocellular nucleus of the anterior nidopallium (lMAN) also contained amylin and had higher amylin label in paired, as opposed to unpaired birds. The wider distribution of amylin in birds as compared to rodents suggests a more general role of amylin in social or other behaviours in avian species than in mammals. Alternatively, parental care in birds may be a more complex behavioural trait involving a wider set of brain regions. The sex differences in song centres, and the changes with reproductive status suggest a participation of amylin in social behaviours and related changes in the singing of males.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Catherine Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Róbert G Kemecsei
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia M Papp
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
4
|
Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. Amino Acids 2019; 51:1129-1152. [DOI: 10.1007/s00726-019-02762-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
|
5
|
Yuan J, Gilbert ER, Cline MA. The central anorexigenic mechanism of amylin in Japanese quail ( Coturnix japonica ) involves pro-opiomelanocortin, calcitonin receptor, and the arcuate nucleus of the hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:28-34. [DOI: 10.1016/j.cbpa.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
6
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
7
|
Fang XL, Zhu XT, Chen SF, Zhang ZQ, Zeng QJ, Deng L, Peng JL, Yu JJ, Wang LN, Wang SB, Gao P, Jiang QY, Shu G. Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: Functions of glucose and lipid metabolism in the feed intake of chickens. Poult Sci 2014; 93:2841-54. [DOI: 10.3382/ps.2014-04047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Wang G, Brumfield B, DiCroce M, Nelson L, Newmyer BA, Flower J, Hipskind K, Sharma S, Gilbert ER, Cline MA. Anorexigenic effects of central adrenomedullin are associated with hypothalamic changes in juvenile Gallus gallus. Gen Comp Endocrinol 2014; 204:223-8. [PMID: 24929231 DOI: 10.1016/j.ygcen.2014.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022]
Abstract
Adrenomedullin (AM), a 52 residue neuropeptide, is associated with anorexia in mammals and has a poorly understood central mechanism of action. Thus, this study focused on elucidating AM's central mechanism of action in an alternative vertebrate model, the chick (Gallus gallus). In Experiment 1, chicks centrally injected with AM dose-dependently reduced food but not water intake. In Experiment 2, those chicks that received central AM had increased c-Fos immunoreactivity in the magnocellular division of the paraventricular nucleus (PaMC), ventromedial hypothalamus (VMH) and doromedial hypothalamus (DM). The lateral hypothalamic area, parvocellular division of the paraventricular hypothalamus and the arcuate nucleus were not affected. In Experiment 3, antagonism of corticotrophin releasing factor (CRF) receptors did not affect AM-associated anorexia. In Experiment 4, a comprehensive behavior analysis was conducted and AM-treated chicks pecked less, moved more, jumped more and spent more time in deep rest. In conclusion, exogenous AM induced anorexia is associated with activation of the PaMC, VMH and DM of the hypothalamus, is not CRF dependent, and affects behaviors unrelated to food intake in chicks.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Michael DiCroce
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Laura Nelson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joshua Flower
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kelly Hipskind
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaan Sharma
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
9
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
10
|
Fukuda T, Hirai Y, Maezawa H, Kitagawa Y, Funahashi M. Electrophysiologically identified presynaptic mechanisms underlying amylinergic modulation of area postrema neuronal excitability in rat brain slices. Brain Res 2013; 1494:9-16. [DOI: 10.1016/j.brainres.2012.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
|
11
|
Abstract
Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA cycle.
Collapse
Affiliation(s)
- Teresa C. Delgado
- Intermediary Metabolism Group, Center for Neurosciences and Cell Biology of Coimbra, Coimbra, Portugal
- *Correspondence: Teresa C. Delgado, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal e-mail:
| |
Collapse
|
12
|
Wang S, Khondowe P, Chen S, Yu J, Shu G, Zhu X, Wang L, Gao P, Xi Q, Zhang Y, Jiang Q. Effects of "Bioactive" amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks. J Anim Sci Biotechnol 2012; 3:27. [PMID: 22958345 PMCID: PMC3494553 DOI: 10.1186/2049-1891-3-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/17/2012] [Indexed: 12/20/2022] Open
Abstract
Feed intake control is vital to ensuring optimal nutrition and achieving full potential for growth and development in poultry. The aim of the present study was to investigate the effects of L-leucine, L-glutamate, L-tryptophan and L-arginine on feed intake and the mRNA expression levels of hypothalamic Neuropeptide involved in feed intake regulation in broiler chicks. Leucine, glutamate, tryptophan or arginine was intra-cerebroventricularly (ICV) administrated to 4d-old broiler chicks respectively and the feed intake were recorded at various time points. Quantitative PCR was performed to determine the hypothalamic mRNA expression levels of Neuropeptide Y (NPY), agouti related protein (AgRP), pro-opiomelanocortin (POMC), melanocortin receptor 4 (MC4R) and corticotrophin releasing factor (CRF). Our results showed that ICV administration of L-leucine (0.15 or 1.5 μmol) significantly (P < 0.05) increased feed intake up to 2 h post-administration period and elevated both hypothalamic NPY and AgRP mRNA expression levels. In contrast, ICV administration of L-glutamate (1.6 μmol) significantly (P < 0.05) decreased feed intake 0.25, 0.5 and 2 h post-injection, and increased hypothalamic CRF and MC4R mRNA expression levels. Meanwhile, both L-tryptophan (10 or 100 μg) and L-arginine (20 or 200 μg) had no significant effect on feed intake. These findings suggested that L-leucine and L-glutamate could act within the hypothalamus to influence food intake, and that both orexigenic and anorexigenic Neuropeptide genes might contribute directly to these effects.
Collapse
Affiliation(s)
- Songbo Wang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Paul Khondowe
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China.,School of Natural Sciences, Department of Biological Sciences, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Shengfeng Chen
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jianjian Yu
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Gang Shu
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xiaotong Zhu
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lina Wang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Ping Gao
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Qianyun Xi
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Yongliang Zhang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Qingyan Jiang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
13
|
The threshold of amylin-induced anorexia is lower in chicks selected for low compared to high juvenile body weight. Behav Brain Res 2010; 208:650-4. [DOI: 10.1016/j.bbr.2009.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
|
14
|
Cline MA, Layne JE, Calchary WA, Sheehy RR, Tachibana T, Furuse M. LPLRFamide causes anorexigenic effects in broiler chicks and Bobwhite quail. Gen Comp Endocrinol 2010; 165:315-20. [PMID: 19646446 DOI: 10.1016/j.ygcen.2009.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/18/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
Although LPLRFamide was the first member of the RFamide family to be isolated from a vertebrate species, its effects on hunger and satiety-related processes are poorly documented. Thus, we intracerebroventricularly administered LPLRFamide (3.0-15.0 nmol) to both Cobb-500 (a broiler type of Gallus gallus) and Bobwhite quail (Colinus virginianus) chicks and measured their food intake. The threshold of anorexigenic response was 7.0 nmol in Cobb-500 chicks and the effect had diminished by 30 min post-injection. In Bobwhite quail all doses of LPLRFamide tested caused anorexia that remained throughout the 60 min observation period. A comprehensive behavior analysis was conducted and Cobb-500 chicks had increased food pecks early in the observation period and spent a greater amount of time in deep rest. Although food pecks were increased pecking efficiency was decreased. In Bobwhite quail, feeding pecks and the number of jumps were reduced after LPLRFamide treatment. We judged that these behaviors in both species were likely not competitive with ingestion and thus did not secondarily contribute to anorexia. These results demonstrate that LPLRFamide is associated with satiety-related processes in Cobb-500 chicks and Bobwhite quail, while threshold of responses are different.
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology, P.O. Box 6931, Radford University, Radford, VA 24142, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Neary MT, Batterham RL. Gut hormones: implications for the treatment of obesity. Pharmacol Ther 2009; 124:44-56. [PMID: 19560488 DOI: 10.1016/j.pharmthera.2009.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 12/17/2022]
Abstract
Bariatric surgery is the only effective treatment for patients with morbid obesity. This is no solution to the present obesity pandemic however. Currently licensed non-surgical pharmaceuticals are of limited efficacy and alternatives are needed. Harnessing the body's own appetite-regulating signals is a desirable pharmacological strategy. The gastrointestinal tract has a prime role in sensing and signalling food intake to the brain. Gut hormones are key mediators of this information, including: peptide YY (PYY), pancreatic polypeptide (PP), glucagon-like peptide 1 (GLP-1), oxyntomodulin (OXM), ghrelin, amylin and cholecystokinin (CCK). This review summarises the latest knowledge regarding the physiological and pathophysiological role of gut hormones in regulating our food intake and how this knowledge could guide, or has guided, the development of weight-loss drugs. Up-to-date outcomes of clinical trials are evaluated and directions for the future suggested.
Collapse
Affiliation(s)
- Marianne T Neary
- Centre for Diabetes and Endocrinology, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|
16
|
Satiety induced by central stresscopin is mediated by corticotrophin-releasing factor receptors and hypothalamic changes in chicks. Pharmacol Biochem Behav 2009; 92:663-9. [DOI: 10.1016/j.pbb.2009.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/17/2022]
|
17
|
Cline MA, Bowden CN, Calchary WA, Layne JE. Short-term anorexigenic effects of central neuropeptide VF are associated with hypothalamic changes in chicks. J Neuroendocrinol 2008; 20:971-7. [PMID: 18540998 DOI: 10.1111/j.1365-2826.2008.01749.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to measure food and water intake, changes in hypothalamic chemistry, and other behaviour modifications after central injection of neuropeptide (NP) VF in broiler type chicks. In Experiment 1, chicks responded to central NPVF with a reduction in food intake for up to 90 min post injection. Water intake was unaffected. In Experiment 2, NPVF exerted a less potent and shorter duration of attenuated food intake than did the structurally related NPFF. In Experiment 3, 16.0 nmol NPVF reversed the prolactin-releasing peptide induced orexigenic effect. In Experiment 4, central NPVF treatment was associated with decreased c-Fos immunoreactivity in the lateral hypothalamus, whereas c-Fos immunoreactivity in the dorsomedial nucleus, infundibular nucleus (homologue to the mammalian arcuate nucleus) and ventromedial nucleus was increased. In Experiment 5, behaviours unrelated to ingestion including sit, stand, deep rest and locomotion were affected by central NPVF injection. Some of these behaviours are incompatible with ingestion and may contribute to hypothalamic associated perception of satiety after central NPVF. In conclusion, NVPF is a short-term regulator of appetite and its effects are associated with hypothalamic and behaviour changes in chicks.
Collapse
Affiliation(s)
- M A Cline
- Department of Biology, Radford University, Radford, VA 24142, USA.
| | | | | | | |
Collapse
|
18
|
Cline MA, Nandar W, Bowden C, Hein PP, Denbow DM, Siegel PB. Differential feeding responses to central alpha-melanocyte stimulating hormone in genetically low and high body weight selected lines of chickens. Life Sci 2008; 83:208-13. [DOI: 10.1016/j.lfs.2008.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/10/2008] [Accepted: 06/06/2008] [Indexed: 11/16/2022]
|
19
|
Cline MA, Fouse DN, Prall BC. Central and peripheral alytesin cause short-term anorexigenic effects in neonatal chicks. Neuropeptides 2008; 42:283-91. [PMID: 18384875 DOI: 10.1016/j.npep.2008.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/10/2008] [Accepted: 02/12/2008] [Indexed: 12/20/2022]
Abstract
We studied the effects of alytesin, a natural analogue of bombesin, on appetite-related responses and behaviors in neonatal chicks. Chicks responded to both intracerebroventricular (ICV) and peripheral injections of alytesin with short-term reduced feed intake. ICV alytesin caused reduced short-term water intake when feed was present, but we determined this effect was secondary to feed intake since an effect on water intake was not detected in feed-restricted alytesin-treated chicks. The anorexigenic effect of both ICV and peripheral alytesin may be mediated at the hypothalamus, since all hypothalamic nuclei studied; regio lateralis hypothalami, nucleus dorsomedialis hypothalami, nucleus paraventricularis magnocellularis, nucleus perventricularis hypothalami, nucleus infundibuli hypothalami and the nucleus ventromedialis hypothalami, were activated as evident by increased c-Fos immunoreactivity. Central alytesin did not cause increased behaviors that were unrelated to ingestion and did not cause anxiety-related behavior patterns. Additionally, central alytesin did not affect pecking efficacy. We conclude that both ICV and peripheral alytesin injections induce anorexigenic effects in chicks, and the hypothalamus is involved. While the anorexigenic effects of alytesin and bombesin appear to be conserved across species, the two peptides may differ in other behavioral responses and central mechanisms of action.
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology (6931), Radford University, Radford, VA 24142, USA.
| | | | | |
Collapse
|
20
|
Nandar W, Milligan JM, Cline MA. Mechanisms of xenin-induced anorectic response in chicks (Gallus gallus). Gen Comp Endocrinol 2008; 157:58-62. [PMID: 18440536 DOI: 10.1016/j.ygcen.2008.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/16/2022]
Abstract
We recently reported that the 25 amino acid peptide xenin caused reduced feed intake when centrally injected in chicks. The present study was designed to explore possible mechanisms of the xenin-induced anorexigenic response in chicks. In Experiments 1 and 2, chicks were implanted with cannulas and xenin injections were made directly into the ventromedialis hypothalami (VMH). Chicks responded with reduced feed intake and increased c-Fos immunoreactivity at the VMH. In Experiment 3 chicks that received co-intracerebroventricular (ICV) injection of naloxone and a dose of xenin (100 pmol), that alone does not affect feed intake, had reduced feed intake. In Experiment 4, chicks responded to ICV xenin with reduced feed- but increased exploratory-pecking. Thus, we conclude that xenin may mediate its effect directly at the VMH and that the endogenous opioid system may counter anorexigenic effects of low xenin doses in chicks. Xenin also caused increased exploration of a novel environment, an effect that may be competitive with feeding. Taken together, these results suggest that xenin regulation of chick appetite is the result of several central and behavioral mechanisms acting in synergism.
Collapse
Affiliation(s)
- Wint Nandar
- Department of Neuroscience and Anatomy, Pennsylvania State University, P.O. Box 850, Hershey, PA 17033, USA
| | | | | |
Collapse
|