1
|
Ma X, Xu W. Research methodology: A bibliometric review using the spastic hand as an example. J Hand Surg Eur Vol 2024:17531934241305802. [PMID: 39668618 DOI: 10.1177/17531934241305802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bibliometric review involves systematically analysing the academic literature on a particular topic, enabling researchers to better understand the trajectory and future trends of a specific research field. This study uses various bibliometric tools to analyse relevant research on the spastic hand over the past two decades, aiming to identify key contributors, hotspots and emerging trends. The results show that early studies focused on cerebral palsy, stroke and botulinum toxin treatment, while recent advancements highlight surgical procedures such as neurectomy and soft tissue transfer. Future research should enhance international collaboration and the use of neuroimaging and electrophysiological techniques to gain a deeper understanding of the neural mechanisms underlying spasticity, optimize surgical procedures and explore novel treatments for spastic hand.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Hand Surgery, Jing'an District Central Hospital, Branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Jing'an District Central Hospital, Branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- National Clinical Key Specialty for Limb Function Reconstruction, Shanghai, China
| |
Collapse
|
2
|
Metelski N, Gu Y, Quinn L, Friel KM, Gordon AM. Safety and efficacy of non-invasive brain stimulation for the upper extremities in children with cerebral palsy: A systematic review. Dev Med Child Neurol 2024; 66:573-597. [PMID: 37528530 DOI: 10.1111/dmcn.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
AIM To evaluate available evidence examining safety and efficacy of non-invasive brain stimulation (NIBS) on upper extremity outcomes in children with cerebral palsy (CP). METHOD We electronically searched 12 sources up to May 2023 using JBI and Cochrane guidelines. Two reviewers selected articles with predetermined eligibility criteria, conducted data extraction, and assessed risk of bias using the Cochrane Risk of Bias criteria. RESULTS Nineteen studies were included: eight using repetitive transcranial magnetic stimulation (rTMS) and 11 using transcranial direct current stimulation (tDCS). Moderate certainty evidence supports the safety of rTMS and tDCS for children with CP. Very low to moderate certainty evidence suggests that rTMS and tDCS result in little to no difference in upper extremity outcomes. INTERPRETATION Evidence indicates that NIBS is a safe and feasible intervention to target upper extremity outcomes in children with CP, although it also indicates little to no significant impact on upper extremity outcomes. These findings are discussed in relation to the heterogeneous participants' characteristics and stimulation parameters. Larger studies of high methodological quality are required to inform future research and protocols for NIBS.
Collapse
Affiliation(s)
- Nicole Metelski
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Yu Gu
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Kathleen M Friel
- Burke Neurological Institute, White Plains, New York, and Weill Cornell Medicine, New York, New York, USA
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00057. [PMID: 39328846 PMCID: PMC11426116 DOI: 10.1162/imag_a_00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired blood oxygenation level dependent (BOLD) signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example, in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Araneda R, Ebner-Karestinos D, Paradis J, Klöcker A, Saussez G, Demas J, Bailly R, Bouvier S, Carton de Tournai A, Herman E, Souki A, Le Gal G, Nowak E, Sizonenko SV, Newman CJ, Dinomais M, Riquelme I, Guzzetta A, Brochard S, Bleyenheuft Y. Changes Induced by Early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities in Young Children With Unilateral Cerebral Palsy: A Randomized Clinical Trial. JAMA Pediatr 2024; 178:19-28. [PMID: 37930692 PMCID: PMC10628844 DOI: 10.1001/jamapediatrics.2023.4809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023]
Abstract
Importance Intensive interventions are provided to young children with unilateral cerebral palsy (UCP), classically focused on the upper extremity despite the frequent impairment of gross motor function. Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) effectively improves manual dexterity and gross motor function in school-aged children. Objective To verify if HABIT-ILE would improve manual abilities in young children with UCP more than usual motor activity. Design, Setting, and Participants This prospective randomized clinical trial (November 2018 to December 2021), including 2 parallel groups and a 1:1 allocation, recruitment took place at European university hospitals, cerebral palsy specialized centers, and spontaneous applications at 3 sites: Brussels, Belgium; Brest, France; and Pisa, Italy. Matched (age at inclusion, lesion type, cause of cerebral palsy, and affected side) pairs randomization was performed. Young children were assessed at baseline (T0), 2 weeks after baseline (T1), and 3 months after baseline (T2). Health care professionals and assessors of main outcomes were blinded to group allocation. At least 23 young children (in each group) aged 12 to 59 months with spastic/dyskinetic UCP and able to follow instructions were needed. Exclusion criteria included uncontrolled seizures, scheduled botulinum toxin injections, orthopedic surgery scheduled during the 6 months before or during the study period, severe visual/cognitive impairments, or contraindications to magnetic resonance imaging. Interventions Two weeks of usual motor activity including usual rehabilitation (control group) vs 2 weeks (50 hours) of HABIT-ILE (HABIT-ILE group). Main Outcomes and Measures Primary outcome: Assisting Hand Assessment (AHA); secondary outcomes: Gross Motor Function Measure-66 (GMFM-66), Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT), and Canadian Occupational Performance Measure (COPM). Results Of 50 recruited young children (26 girls [52%], median age; 35.3 months for HABIT-ILE group; median age, 32.8 months for control group), 49 were included in the final analyses. Change in AHA score from T0 to T2 was significantly greater in the HABIT-ILE group (adjusted mean score difference [MD], 5.19; 95% CI, 2.84-7.55; P < .001). Changes in GMFM-66 (MD, 4.72; 95% CI, 2.66-6.78), PEDI-CAT daily activities (MD, 1.40; 95% CI, 0.29-2.51), COPM performance (MD, 3.62; 95% CI, 2.91-4.32), and satisfaction (MD, 3.53; 95% CI, 2.70-4.36) scores were greater in the HABIT ILE group. Conclusions and Relevance In this clinical trial, early HABIT-ILE was shown to be an effective treatment to improve motor performance in young children with UCP. Moreover, the improvements had an impact on daily life activities of these children. Trial registration ClinicalTrials.gov Identifier: NCT04020354.
Collapse
Affiliation(s)
- Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Daniela Ebner-Karestinos
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Julie Paradis
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anne Klöcker
- Haute Ecole Léonard de Vinci, Parnasse-ISEI, Brussels, Belgium
| | - Geoffroy Saussez
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Forme et Fonctionnement Humain Unit, Department of Motor Sciences, CeREF - Haute Ecole Louvain en Hainaut, Belgium
| | - Josselin Demas
- Université d’Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) – EA7315 F-49000 France
- Instituts de formation du Centre Hospitalier de Laval, Laval, France
| | - Rodolphe Bailly
- INSERM UMR 1101, LaTIM, Brest, France
- Pediatric Rehabilitation Department, Fondation Ildys, Brest, France
| | - Sandra Bouvier
- Pediatric Rehabilitation Department, Fondation Ildys, Brest, France
- Western Brittany University, Brest, France
| | | | - Enimie Herman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Grégoire Le Gal
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - Emmanuel Nowak
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - Stephane V. Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Christopher J. Newman
- Paediatric Neurology and Neurorehabilitation Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mickael Dinomais
- Université d’Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) – EA7315 F-49000 France
- CHU Angers, Département de Médecine Physique et de Réadaptions, CHU Angers-Capucins, F- 49933, France
| | - Inmaculada Riquelme
- Department of Nursing and Physiotherapy and Research Institute on Health Sciences (UINICS-Idisba), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvain Brochard
- INSERM UMR 1101, LaTIM, Brest, France
- Pediatric Rehabilitation Department, Fondation Ildys, Brest, France
- Western Brittany University, Brest, France
- University Hospital of Brest, Brest, France
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549746. [PMID: 37503125 PMCID: PMC10370165 DOI: 10.1101/2023.07.19.549746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired BOLD signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
Hinchberger V, Kang SH, Kline J, Stanley CJ, Bulea TC, Damiano DL. Investigation of brain mechanisms underlying upper limb function in bilateral cerebral palsy using EEG. Clin Neurophysiol 2023; 151:116-127. [PMID: 37245498 PMCID: PMC10330582 DOI: 10.1016/j.clinph.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Few studies focus on upper limbs in bilateral cerebral palsy (CP) despite potential bimanual deficits. Electroencephalography (EEG) was utilized to investigate brain mechanisms underlying upper limb tasks in bilateral CP and typical development (TD) and relationships to function. METHODS 26 (14 CP; 12 TD) completed the Box and Blocks Test and transport task with paper, sponge or mixed blocks, while recording EEG and motion data. RESULTS Group effects for path time, path length and Box and Blocks Test revealed bimanual deficits. Four sensorimotor-related EEG clusters were identified. Group effects were found in premotor and dominant motor clusters with greater beta event-related desynchronization (ERD) in CP. Hand and hand by group effects were found in the dominant motor cluster, showing greater ERD with the more affected hand in CP. Condition effects were prominent in the posterior parietal cluster with higher ERD reflecting greater difficulty in force modulation. CONCLUSIONS Higher brain activation associated with greater bimanual deficits is similar to our lower limb findings but contrasts studies in TD or unilateral CP linking higher ERD to greater proficiency. SIGNIFICANCE Bilateral CP shows overreliance on the dominant hemisphere with the less functional hand and higher brain activity presumably related to excessive intracortical connectivity.
Collapse
Affiliation(s)
- Victoria Hinchberger
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Si Hyun Kang
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA; Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Julia Kline
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Christopher J Stanley
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Thomas C Bulea
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA
| | - Diane L Damiano
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, USA.
| |
Collapse
|
7
|
Ebner-Karestinos D, Gathy E, Carton de Tournai A, Herman E, Araneda R, Dricot L, Macq B, Vandermeeren Y, Bleyenheuft Y. Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) in adults with chronic stroke: protocol of a randomised controlled trial. BMJ Open 2023; 13:e070642. [PMID: 37055214 PMCID: PMC10106060 DOI: 10.1136/bmjopen-2022-070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Stroke causes multiple deficits including motor, sensitive and cognitive impairments, affecting also individual's social participation and independence in activities of daily living (ADL) impacting their quality of life. It has been widely recommended to use goal-oriented interventions with a high amount of task-specific repetitions. These interventions are generally focused only on the upper or lower extremities separately, despite the impairments are observed at the whole-body level and ADL are both frequently bimanual and may require moving around. This highlights the need for interventions targeting both upper and lower extremities. This protocol presents the first adaptation of Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) for adults with acquired hemiparesis. METHODS AND ANALYSIS This randomised controlled trial will include 48 adults with chronic stroke, aged ≥40 years. This study will compare the effect of 50 hours of HABIT-ILE against usual motor activity and regular rehabilitation. HABIT-ILE will be provided in a 2-week, adult's day-camp setting, promoting functional tasks and structured activities. These tasks will continuously progress by increasing their difficulty. Assessed at baseline, 3 weeks after and at 3 months, the primary outcome will be the adults-assisting-hand-assessment stroke; secondary outcomes include behavioural assessments for hand strength and dexterity, a motor learning robotic medical device for quality of bimanual motor control, walking endurance, questionnaires of ADL, stroke impact on participation and self-determined patient-relevant goals, besides neuroimaging measures. ETHICS AND DISSEMINATION This study has full ethical approval from the Comité d'éthique Hospitalo-Facultaire/Université catholique de Louvain, Brussels (reference number: 2013/01MAR/069) and the local medical Ethical Committee of the CHU UCL Namur-site Godinne. Recommendations of the ethical board and the Belgian law of 7 May 2004, concerning human experiments will be followed. Participants will sign a written informed consent ahead of participation. Findings will be published in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER NCT04664673.
Collapse
Affiliation(s)
- Daniela Ebner-Karestinos
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Estelle Gathy
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Enimie Herman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Neuroimaging platform (NIMA), Université catholique de Louvain, Brussels, Belgium
| | - Benoît Macq
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Neurology Department, Stroke Unit/NeuroModulation Unit (NeMU), Université catholique de Louvain, Yvoir, Belgium
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Damiano DL, Pekar JJ, Mori S, Faria AV, Ye X, Stashinko E, Stanley CJ, Alter KE, Hoon AH, Chin EM. Functional and Structural Brain Connectivity in Children With Bilateral Cerebral Palsy Compared to Age-Related Controls and in Response to Intensive Rapid-Reciprocal Leg Training. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:811509. [PMID: 36189020 PMCID: PMC9397804 DOI: 10.3389/fresc.2022.811509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
Background Compared to unilateral cerebral palsy (CP), less is known about brain reorganization and plasticity in bilateral CP especially in relation or response to motor training. The few trials that reported brain imaging results alongside functional outcomes include a handful of studies in unilateral CP, and one pilot trial of three children with bilateral CP. This study is the first locomotor training randomized controlled trial (RCT) in bilateral CP to our knowledge reporting brain imaging outcomes. Methods Objective was to compare MRI brain volumes, resting state connectivity and white matter integrity using DTI in children with bilateral CP with PVL and preterm birth history (<34 weeks), to age-related controls, and from an RCT of intensive 12 week rapid-reciprocal locomotor training using an elliptical or motor-assisted cycle. We hypothesized that connectivity in CP compared to controls would be greater across sensorimotor-related brain regions and that functional (resting state) and structural (fractional anisotropy) connectivity would improve post intervention. We further anticipated that baseline and post-intervention imaging and functional measures would correlate. Results Images were acquired with a 3T MRI scanner for 16/27 children with CP in the trial, and 18 controls. No conclusive evidence of training-induced neuroplastic effects were seen. However, analysis of shared variance revealed that greater increases in precentral gyrus connectivity with the thalamus and pons may be associated with larger improvements in the trained device speed. Exploratory analyses also revealed interesting potential relationships between brain integrity and multiple functional outcomes in CP, with functional connectivity between the motor cortex and midbrain showing the strongest potential relationship with mobility. Decreased posterior white matter, corpus callosum and thalamic volumes, and FA in the posterior thalamic radiation were the most prominent group differences with corticospinal tract differences notably not found. Conclusions Results reinforce the involvement of sensory-related brain areas in bilateral CP. Given the wide individual variability in imaging results and clinical responses to training, a greater focus on neural and other mechanisms related to better or worse outcomes is recommended to enhance rehabilitation results on a patient vs. group level.
Collapse
Affiliation(s)
- Diane L. Damiano
- Department of Rehabilitation Medicine, NIH, Bethesda, MD, United States
| | - James J. Pekar
- FM Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Susumu Mori
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Andreia Vasconcellos Faria
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - X. Ye
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elaine Stashinko
- Johns Hopkins School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| | | | | | - Alec H. Hoon
- Johns Hopkins School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| | - Eric M. Chin
- Johns Hopkins School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|