1
|
Wang H, Liu K, Zeng W, Bai J, Xiao L, Qin Y, Liu Y, Xu X. Pyrroroquinoline Quinone (PQQ) Improves the Quality of Holstein Bull Semen during Cryopreservation. Animals (Basel) 2024; 14:2940. [PMID: 39457870 PMCID: PMC11503688 DOI: 10.3390/ani14202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cryopreserved semen is extensively utilized in the artificial insemination (AI) of domestic animals; however, suboptimal conception rates due to oxidative damage following AI continue to pose a challenge. The present study investigated the effects of Pyrroroquinoline Quinone (PQQ), a novel antioxidant, on the semen quality of Holstein bulls during cryopreservation, as well as its potential molecular mechanisms. Semen samples were diluted with varying concentrations of PQQ (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) prior to cryopreservation. Following the freeze-thaw process, a comprehensive evaluation was conducted to assess sperm motility, plasma membrane integrity, acrosome integrity, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and adenosine triphosphate (ATP). Western blot analysis was employed to examine the levels of proteins including PGAM2, CAPZB, CAT, SOD1, and GPX1. Notably, the inclusion of 100 μmol/L PQQ significantly enhanced sperm motility, membrane integrity, and acrosome integrity post freeze-thawing (p < 0.05). Furthermore, the group treated with 100 μmol/L PQQ exhibited reduced levels of MDA and ROS (p < 0.05), while ATP levels were significantly elevated (p < 0.05). Interestingly, treatment with 100 μmol/L PQQ resulted in decreased consumption of PGAM2, CAPZB, CAT, SOD1, and GPX1 proteins in sperm after freeze-thawing, compared to the control group (p < 0.05). These findings indicate that PQQ treatment enhances the quality of bull semen, mitigates oxidative stress damage, and ultimately improves the efficacy of sperm cryopreservation.
Collapse
Affiliation(s)
- Hai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| |
Collapse
|
2
|
Zhang S, Zhang H, Liu K, Xu X, Qin Y, Xiao L, Zhou C, Wu J, Liu Y, Bai J. Effect of cholesterol-loaded cyclodextrin treatment on boar sperm cryopreservation. Anim Biosci 2024; 37:1558-1567. [PMID: 38754842 PMCID: PMC11366524 DOI: 10.5713/ab.24.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE This study investigated the efficacy of different concentrations of cholesterolloaded cyclodextrin (CLC) on cryopreservation in boar sperm quality. METHODS In this study, we treated boar sperm with different concentrations of CLC before freezing and analyzed the sperm cholesterol concentration, plasma membrane, acrosome integrity rate and total motility rate before and after freeze-thawing. We also investigated the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), and structural- and oxidative-damage related proteins in all groups after thawing. RESULTS The results revealed that the cholesterol concentration of the CLC-treated groups was higher than that of the control group, both before freezing and after thawing (p<0.05). The plasma membrane integrity rate, acrosome integrity rate, and total motility rate of sperm were also enhanced after thawing in the CLC-treated group (all p<0.05). Moreover, ROS and MDA production and ATP loss were reduced in CLC-treated sperm during freezing and thawing (p<0.05). Finally, CLC pretreatment partially prevented the consumption of various proteins involved in metabolism including capping actin protein of muscle Z-line subunit beta (CAPZB), heat shock protein 90 alpha family class A member 1 (HSP90AA1) and phosphoglycerate mutase 2 (PGAM2) (p<0.05). CONCLUSION The CLC treatment increased cholesterol concentration and decreased structural injury and oxidative damage during boar sperm freezing and thawing, improving the efficacy of sperm cryopreservation in boar.
Collapse
Affiliation(s)
- Silong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096,
China
| | - Hanbing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096,
China
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Chunmei Zhou
- Beijing Feifan Biotechnology Co., Ltd., Beijing 100094,
China
| | - Jianliang Wu
- Beijing Zhongyu Pig Breeding Co., Ltd., Beijing 100194,
China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| |
Collapse
|
3
|
Xu Y, Sun S, Fu Y, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Positive In Vitro Effect of ROCK Pathway Inhibitor Y-27632 on Qualitative Characteristics of Goat Sperm Stored at Low Temperatures. Animals (Basel) 2024; 14:1441. [PMID: 38791659 PMCID: PMC11117216 DOI: 10.3390/ani14101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Y-27632, as a cytoskeleton protector, is commonly used for low-temperature preservation of cells. Goat sperm are prone to damage to the cytoskeleton under low-temperature conditions, leading to a loss of sperm vitality. However, the Y-27632 small molecule has not yet been used in research on low-temperature preservation of goat semen. This study aims to address the issue of low temperature-induced loss of sperm motility in goats by using Y-27632, and explore the regulation of Y-27632 on goat sperm metabolism. At a low temperature of 4 °C, different concentrations of Y-27632 were added to the sperm diluent. The regulation of Y-27632 on the quality of low temperature-preserved goat semen was evaluated by detecting goat sperm motility, antioxidant capacity, mitochondrial activity, cholesterol levels, and metabolomics analysis. The results indicated that 20 µM Y-27632 significantly increased plasma membrane integrity (p < 0.05), and acrosome integrity (p < 0.05) and sperm motility (p < 0.05), increased levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.01), increased total antioxidant capacity (T-AOC) (p < 0.05), decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (p < 0.01), and significantly increased mitochondrial membrane potential (MMP). The levels of ATP, Ca2+, and TC in sperm increased (p < 0.01). Twenty metabolites with significant differences were identified, with six metabolic pathways having a significant impact, among which the D-glutamic acid and D-glutamine metabolic pathways had the most significant impact. The artificial insemination effect of goat semen treated with 20 μM Y-27632 was not significantly different from that of fresh semen. This study indicates that Y-27632 improves the quality of low-temperature preservation of sperm by protecting the sperm plasma membrane, enhancing sperm antioxidant capacity, regulating D-glutamine and D-glutamate metabolism, and promoting the application of low-temperature preservation of semen in artificial insemination technology.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Aramli MS, Sarvi Moghanlou K, Pourahad Anzabi M. A brief review of the methodology and cryoprotectants in selected fish and mammalian species. Reprod Domest Anim 2024; 59:e14575. [PMID: 38715442 DOI: 10.1111/rda.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024]
Abstract
Cryopreservation is a valuable technique used to assist in the genetic improvement of cultured stocks and provide a continuous supply of good-quality semen for artificial insemination. Conserving semen by cryopreservation serves several purposes (e.g. artificial reproductive technologies and species conservation) and is also used in the clinical treatment of human infertility. However, the lifespan of cryopreserved semen is influenced by a range of factors, including storage temperature, cooling rate, chemical composition of the extender, the concentration of cryoprotectant, reactive oxygen species, seminal plasma composition and hygienic control. The choice of cryoprotectant is a vital factor underlying the success of animal semen cryopreservation. In this regard, extensive research has been carried out on various cryoprotectants, such as egg yolk, dimethyl sulfoxide, methanol, ethylene glycol and dimethylacetamide. Recent studies have also described the use of a range of new cryoprotectants for cryopreservation, including compounds of plant origin (soy), amino acids, antifreeze proteins, carbohydrates and cyclodextrins. Moreover, semen cryopreservation and storage require the use of liquid nitrogen or ultralow refrigeration methods for both long- and short-term storage. This review summarizes the general methods used for freezing semen and discusses the use of traditional and newly emerging cryoprotectants (permeable and non-permeable) for the cryopreservation of semen in selected fish and mammalian species.
Collapse
|
5
|
Asadpour R, Aminirad M, Rahbar M, Hajibemani A, Rezaei Topraggaleh T. Effects of hyaluronic acid on sperm parameters, mitochondrial function and apoptosis of spermatozoa in Simmental bulls with good and poor freezing ability. J Anim Physiol Anim Nutr (Berl) 2024; 108:383-394. [PMID: 37899704 DOI: 10.1111/jpn.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Bulls with varying freezability exhibit substantial variation in semen characteristics after cryopreservation. Sperm freezability is positively correlated with membrane cholesterol content, membrane integrity, mitochondrial activity and antioxidant content. The purpose of this study was to determine the optimal concentration of hyaluronic acid (HA) in bull sperm with different cryotolerances. Simmental bulls (n = 10) semen samples were taken and categorized based on their progressive motility (PM) after freeze-thawing: Group I, consisting of bulls (n = 5) with progressive sperm motility ≥45%, was considered good freezability ejaculates (GF), and Group II, including bulls (n = 5) with progressive sperm motility ≤30%, was considered poor freezability ejaculates (PF) bulls. Semen samples were diluted with a Tris-egg-yolk-glycerol (TEYG) extender containing various concentrations of HA: without HA (control), 1 mM HA, 2 mM HA and 4 mM HA. After the freeze-thaw process, sperm kinematics, plasma membrane and acrosome integrity, mitochondrial activity and apoptotic status were evaluated. The addition of 1 mM HA to the diluent of bulls with GF increased PM and linearity (LIN) compared to the control group (p < 0.05). Normal morphology was improved after thawing in the samples treated with 1 and 2 mM HA in the GF and PF bulls respectively. The membrane and acrosome integrity of GF bulls treated with 1 mM HA was significantly (p < 0.05) greater than that of the control groups. Adding 1 mM HA to the extender of bulls with GF and PF improved the proportion of viable cells compared with the highest concentration (4 mM) of HA. The mitochondrial activity of PF bulls treated with 1 and 2 mM HA was significantly (p < 0.05) greater than that of the controls and 4 mM HA. Finally, it can be concluded that adding low doses of HA (1 mM) to the TEYG extender of GF and PF bulls ameliorated the post-thaw semen quality.
Collapse
Affiliation(s)
- Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Muhamadreza Aminirad
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abolfazl Hajibemani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Zheng X, Zhang C, Cao H, Zhou X, Liu Z, Wang J. Zinc Cations Uniquely Stabilize Cell Membrane for Cell Cryopreservation. NANO LETTERS 2023; 23:9920-9927. [PMID: 37847595 DOI: 10.1021/acs.nanolett.3c02866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
We report, for the first time, merely using a small amount of (0.039% w/w) Zn(II) instead of very high concentration (25%-50% w/w) of conventional cryoprotective agents (CPAs), i.e., glycerol, during the cryopreservation of red blood cells (RBCs) can lead to a comparable post-thaw recovery rate of ∼95% while avoiding the tedious gradient washout process for the removal of CPA afterward. The result is remarkable, since Zn(II) does not have the ice-controlling ability reported to be critical for CPA. It benefits from its moderate interaction with lipid molecules, facilitating the formation of small and dynamic lipid clusters. Consequently, the membrane fluidity is maintained, and the cells are resilient to osmotic and mechanical stresses during cryopreservation. This study first reports the ion-specific effect on stabilizing the cell membrane; meanwhile, reversibly tuning the structure of biological samples against injuries during the cooling and rewarming provides a new strategy for cryopreservation.
Collapse
Affiliation(s)
- Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanbiao Zhang
- College of Physics and Electronic Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Huimei Cao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Zhang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianjun Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
7
|
Ofosu J, Nartey MA, Mo X, Ye J, Zhang Y, Zeng C, Zhang M, Fang Y, Zhou G. Ram sperm cryopreservation disrupts metabolism of unsaturated fatty acids. Theriogenology 2023; 204:8-17. [PMID: 37030173 DOI: 10.1016/j.theriogenology.2023.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.
Collapse
Affiliation(s)
- Jones Ofosu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Moses Addo Nartey
- Department of Animal and Health Science, University of Energy and Natural Resources, Ghana
| | - Xianhong Mo
- College of Chemistry and Life Science, Chifeng University, Chifeng, 024000, PR China
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ming Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
8
|
Bozzi ADR, Particelli LH, Viana CHC, Quirino CR, Andrade AFCD, Freitas FVD, Passarelli MDS, Celeghini ECDC, Bedoya HJN, Chay-Canul AJ, Costa RLDD. Addition of orange, pineapple and beet juices as extenders for cryopreservation of ram semen. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-72745e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract Searching for improvements in semen cryopreservation, natural substances are commonly studied focusing to improve the sperm quality. The aim of this study were evaluated the effect of adding orange, pineapple, and beet juices in different concentrations and combinations to the ram semen cryopreservation extender. Five ejaculates from five adult rams were used. The semen pool was diluted in egg yolk-based extender and mixed with the following 15 treatments (at a final concentration of 400.106 sptz/mL): orange 10% (O10) and 15% (O15); pineapple 10% (P10) and 15% (P15); beet 10% (B10) and 15% (B15); pineapple + orange 10% (PO10) and 15% (PO15); pineapple + beet 10% (PB10) and 15% (PB15); beet + orange 10% (BO10) and 15% (BO15); pineapple + beet + orange 10% (PBO10) and 15% (PBO15); and the control group (CON). Post-thaw in 0.25 mL straws semen quality analysis of cryopreserved semen was performed by CASA and flow cytometry. Analysis of variance (PROC GLM) was carried out and the averages were compared using the SNK test. Pearson's correlation test was also performed. No effect was noted in the addition of juices to the semen extender prior to cryopreservation. Post-thawed, although, statistically similar to the control group, the total motility of the B10 group reached acceptable standards of total motility. In addition, B10 group showed the highest values (p<0.05) of progressive motility than control group or other treatments. The addition of 10% beet juice to the ram semen extender can improve the cryopreservation of sperm motility.
Collapse
|
9
|
Bozzi ADR, Particelli LH, Viana CHC, Quirino CR, Andrade AFCD, Freitas FVD, Passarelli MDS, Celeghini ECDC, Bedoya HJN, Chay-Canul AJ, Costa RLDD. Adição de sucos de laranja, abacaxi e beterraba em diluidor para criopreservação de sêmen de carneiros. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-72745p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Resumo Em busca de melhorias na criopreservação do sêmen, substâncias naturais são comumente estudadas com o objetivo de melhorar a qualidade do sêmen. O objetivo deste estudo foi avaliar o efeito da adição de sucos de laranja, abacaxi e beterraba em diferentes concentrações e combinações ao diluidor de criopreservação de sêmen ovino. Foram utilizados cinco ejaculados de cinco carneiros adultos. O pool de sêmen foi diluído em diluente à base de gema de ovo e misturado com os seguintes 15 tratamentos (na concentração final de 400x10⁶ sptz/ml): laranja 10% (O10) e 15% (O15); abacaxi 10% (P10) e 15% (P15); beterraba 10% (B10) e 15% (B15); abacaxi + laranja 10% (PO10) e 15% (PO15); abacaxi + beterraba 10% (PB10) e 15% (PB15); beterraba + laranja 10% (BO10) e 15% (BO15); abacaxi + beterraba + laranja 10% (PBO10) e 15% (PBO15); e o grupo controle (CON). Pós-descongelação em palhetas de 0,25 ml a análise da qualidade do sêmen criopreservado foi realizada pelo CASA e citometria de fluxo. A análise de variância foi realizada e as médias comparadas pelo teste SNK. O teste de correlação de Pearson também foi realizado. Nenhum efeito foi observado na adição de sucos ao diluidor de sêmen antes da criopreservação. Após o descongelamento, embora estatisticamente semelhante ao grupo controle, a motilidade total do grupo B10 atingiu padrões aceitáveis de motilidade total. Além disso, o grupo B10 apresentou os maiores valores (p<0,05) de motilidade progressiva que o grupo controle ou os outros tratamentos. A adição de 10% de suco de beterraba ao diluente de sêmen ovino pode melhorar a criopreservação da motilidade espermática.
Collapse
|
10
|
Monteiro MS, Torres MA, Passarelli MDS, Martins MP, Ravagnani GM, Papa FO, Alvarenga MA, Dell'Aqua Júnior JA, Yasui GS, Martins SMMK, de Andrade AFC. Impact of cryopreservation protocols (one- and two-step) on boar semen quality at 5 °C and post-thawing. Anim Reprod Sci 2022; 247:107093. [DOI: 10.1016/j.anireprosci.2022.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022]
|
11
|
Andrade AFC, Knox RV, Torres MA, Pavaneli APP. What is the relevance of seminal plasma from a functional and preservation perspective? Anim Reprod Sci 2022; 246:106946. [PMID: 35216848 DOI: 10.1016/j.anireprosci.2022.106946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
Abstract
When preserving sperm in the liquid or cryopreserved state, seminal plasma (SP) components within ejaculates can alter fertilizing capacity of these gametes. Depending on the species or how semen is collected, volume and concentration of SP components varies considerably. The SP contains substances essential for maintenance of sperm viability and fertility; however, these components can be deleterious depending on quantity, or duration of time before there is removal of SP from sperm in semen processing. Substances that impair (e.g., BSP - bull; HSP-1 - stallion; Major seminal plasma protein PSPI - boar) or improve (e.g., spermadhesin PSP-I - boar) spermatozoa fertilizing capacity have been identified. Depending on individual males, species, and semen collection procedures, SP removal may be beneficial before preservation in the liquid or cryopreserved state. In some cases, SP that is removed can be added back to thawing extender with there being positive effects in thawed sperm and for sperm viability in the female reproductive tract. In this review article, there is a focus on different effects of SP in samples of cooled and cryopreserved semen from four domestic species (pigs, horses, cattle, and sheep) with there being emphasis on how SP modulates the function and morphology of sperm cells before, during, and after preservation in the refrigerated or cryopreserved state. The present review is part of the Festschrift in honor of Dr. Duane Garner who made major contributions to the area of focus in this manuscript as evidenced by the many times his research is cited in this manuscript.
Collapse
Affiliation(s)
- A F C Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Department of Animal Sciences, College of Agricultural, Consumer & Environmental Sciences, University of Illinois at Urbana-Champaign, United States.
| | - R V Knox
- Department of Animal Sciences, College of Agricultural, Consumer & Environmental Sciences, University of Illinois at Urbana-Champaign, United States.
| | - M A Torres
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - A P P Pavaneli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
12
|
Schäfer-Somi S, Colombo M, Luvoni GC. Canine Spermatozoa—Predictability of Cryotolerance. Animals (Basel) 2022; 12:ani12060733. [PMID: 35327130 PMCID: PMC8944828 DOI: 10.3390/ani12060733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Semen freezing in dogs is a field of growing interest. The international shipment of cryoconserved semen contributes to the avoidance of long travels and long-term storage of valuable gametes. However, the collection of one semen portion on average results in one to three doses for artificial insemination, which is a poor result in comparison to the outcome in large animals. The costs for the owners are therefore rather high. In individual dogs, the semen quality of raw semen is good; however, it could be suboptimal after thawing. To avoid costly freezing of these low-quality ejaculates, markers of freezability are useful. An abundance of markers are available for large animals, but not for dogs. This review provides an overview on markers for freezability of canine semen. Abstract Markers of freezability allow the selection of ejaculates of good freezability. So far, most investigations were conducted in boars, bulls, rams and horses, with high economic interests triggering the efforts. The progress in dogs is comparably slow. A critical evaluation of the methods requires consideration of practicability, with most labs not even possessing a computer assisted sperm analyser (CASA); furthermore, small canine ejaculates mostly do not allow the use of large semen volumes. In dogs, modern markers of freezability no longer assess single membrane constituents or seminal plasma components but comprise tests of cell functionality and adaptability, energy metabolism, cluster analyses of kinetic and morphometric parameters, as well as DNA intactness. Identification of the most efficient combination of tests seems useful. At present, examination by CASA combined with cluster analysis of kinetic subgroups, JC-1 staining and COMET assay or staining with toluidine blue seem most appropriate; however, cell volumetry and other functional tests deserve better attention. A better understanding of spermatozoa energy metabolism might reveal new markers. This review focuses on the requirements and markers of freezability of canine semen, highlighting potential future candidates.
Collapse
Affiliation(s)
- Sabine Schäfer-Somi
- Department for Small Animals and Horses, Platform for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine, 1210 Vienna, Austria
- Correspondence:
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (G.C.L.)
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (G.C.L.)
| |
Collapse
|
13
|
Torres MA, Pedrosa AC, Novais FJ, Alkmin DV, Cooper BR, Yasui GS, Fukumasu H, Machaty Z, de Andrade AFC. Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm freezability. Biol Reprod 2021; 106:213-226. [PMID: 34725678 DOI: 10.1093/biolre/ioab200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/16/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Holding at room temperature is the first step in most boar semen cryopreservation protocols. It is well accepted that a holding time (HT) of 24 h increases sperm cryotolerance. However, the effect of HT on ejaculates with different freezability is not entirely clear. The aim of this study was to understand how HT influences spermatic and seminal plasma metabolite profiles of boar ejaculates and how these possible changes affect freezability. Twenty-seven ejaculates were collected and extended to 1:1 (v: v) with BTS and split into two aliquots. The first aliquot was cryopreserved without holding time (0 h), and the second was held at 17°C for 24 h before cryopreservation. Spermatozoa and seminal plasma were collected by centrifugation at two times, before HT (0 h) and after HT (24 h), and subsequently frozen until metabolite extraction and UPLC-MS analysis. After thawing, the semen samples were evaluated for kinetics, membrane integrity, mitochondrial potential, membrane lipid peroxidation, and fluidity. The ejaculates were then allocated into two phenotypes (good ejaculate freezers [GEF] and poor ejaculate freezers [PEF]) based on the percent reduction in sperm quality (%RSQ) as determined by the difference in total motility and membrane integrity between raw and post-thaw samples cryopreserved after 24 h of HT. The metabolic profile of the seminal plasma did not seem to influence ejaculate freezability, but that of the spermatozoa were markedly different between GEF and PEF. We identified a number of metabolic markers in the sperm cells (including inosine, hypoxanthine, creatine, ADP, niacinamide, spermine, and 2-methylbutyrylcarnitine) that were directly related to the improvement of ejaculate freezability during HT; these were components of metabolic pathways associated with energy production. Furthermore, PEF showed an up-regulation in the arginine and proline as well as the glutathione metabolism pathways. These findings help to better understand the effect of holding time on boar sperm freezability and propose prospective metabolic markers that may predict freezability; this has implications in both basic and applied sciences.
Collapse
Affiliation(s)
- Mariana A Torres
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.,Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
| | - Ana Carolina Pedrosa
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Francisco José Novais
- Multi-User Lab Centralized Functional Genomics Applied to Agriculture and Agri-energy, Department of Animal Science, Luiz de Queiroz College of Agriculture- ESALQ-USP, University of São Paulo, Piracicaba, SP Brazil
| | | | - Bruce R Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - George S Yasui
- Laboratory of Biotechnology of Fishes (CEPTA/ICMBio), Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Zoltan Machaty
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
| | - André F C de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
14
|
Díaz R, Quiñones J, Short S, Contreras P, Ulloa-Rodríguez P, Cancino-Baier D, Sepúlveda N, Valdebenito I, Farías JG. Effect of exogenous lipids on cryotolerance of Atlantic salmon (Salmo salar) spermatozoa. Cryobiology 2021; 98:25-32. [PMID: 33412157 DOI: 10.1016/j.cryobiol.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 01/22/2023]
Abstract
The development of semen cryopreservation strategies is necessary to improve the semen storage technologies of species of great commercial interest for aquaculture. Recent studies demonstrate that lipids play an important role in the fertility and cryotolerance of fish gametes. This study investigated the effect of exogenous lipids in the freezing medium on the post-thaw functional parameters of Salmo salar spermatozoa. Semen samples (n = 12) were incubated in standard extender supplemented with different concentrations of oleic acid (OA, C18:1n9), linoleic acid (LA, C18:2n6), arachidonic acid (ARA, C20:4n6) and cholesterol-loaded cyclodextrin (CLC). Post-thaw motility, membrane integrity, mitochondrial membrane potential (ΔΨm), superoxide anion (O2•-) and fertility rates were analyzed. The results revealed that the semen incubated with 0.003 mmol/L OA increased the motility (~7%) and ΔΨm (~2%) (P < 0.05), but membrane integrity and fertility were not increased. The addition of 0.003 mmol/L LA increased the motility (~4%) and all LA extenders increased the ΔΨm (P < 0.05); however, LA increased the O2•- levels and decreased the membrane integrity and fertility (P < 0.05). Semen incubated with ARA improved sperm motility (~5%), membrane integrity (~10.5%) and fertility rates (~11%) (P < 0.05). The maximum improvement in post-thaw sperm functionality was observed by adding 0.003 mmol/L ARA. In contrast, sperm quality parameters and fertility were decreased by the CLC addition (P < 0.05). This study showed that ARA could be considered as an additive for semen cryopreservation and could be relevant in the reproductive process and reproductive management of Salmo salar.
Collapse
Affiliation(s)
- Rommy Díaz
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile; Centro de Biotecnología de La Reproducción (CEBIOR-BIOREN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - John Quiñones
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Stefania Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Pablo Contreras
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Patricio Ulloa-Rodríguez
- Departamento de Ciencias Agrarias, Facultad de Ciencias Agrarias y Forestales, Universidad Católica Del Maule, Curicó, Chile
| | - David Cancino-Baier
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Temuco, Chile
| | - Néstor Sepúlveda
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Iván Valdebenito
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Jorge G Farías
- Centro de Biotecnología de La Reproducción (CEBIOR-BIOREN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
15
|
Peris-Frau P, Soler AJ, Iniesta-Cuerda M, Martín-Maestro A, Sánchez-Ajofrín I, Medina-Chávez DA, Fernández-Santos MR, García-Álvarez O, Maroto-Morales A, Montoro V, Garde JJ. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int J Mol Sci 2020; 21:ijms21082781. [PMID: 32316334 PMCID: PMC7215299 DOI: 10.3390/ijms21082781] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Sperm cryopreservation represents a powerful tool for livestock breeding. Several efforts have been made to improve the efficiency of sperm cryopreservation in different ruminant species. However, a significant amount of sperm still suffers considerable cryodamage, which may affect sperm quality and fertility. Recently, the use of different “omics” technologies in sperm cryobiology, especially proteomics studies, has led to a better understanding of the molecular modifications induced by sperm cryopreservation, facilitating the identification of different freezability biomarkers and certain proteins that can be added before cryopreservation to enhance sperm cryosurvival. This review provides an updated overview of the molecular mechanisms involved in sperm cryodamage, which are in part responsible for the structural, functional and fertility changes observed in frozen–thawed ruminant sperm. Moreover, the molecular basis of those factors that can affect the sperm freezing resilience of different ruminant species is also discussed as well as the molecular aspects of those novel strategies that have been developed to reduce sperm cryodamage, including new cryoprotectants, antioxidants, proteins, nanoparticles and vitrification.
Collapse
|