1
|
Dong X, Wang H, Cai J, Wang Y, Chai D, Sun Z, Chen J, Li M, Xiao T, Shan C, Zhang JV, Yu M. ST6GALNAC1-mediated sialylation in uterine endometrial epithelium facilitates the epithelium-embryo attachment. J Adv Res 2024:S2090-1232(24)00306-0. [PMID: 39111624 DOI: 10.1016/j.jare.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Embryo implantation requires synergistic interaction between the embryo and the receptive endometrium. Glycoproteins and glycan-binding proteins are involved in endometrium-embryo attachment. Sialyl Tn (sTn), a truncated O-glycan, is catalyzed by ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 (ST6GALNAC1) and can be detected by specific Sialic-acid-binding immunoglobulin-like lectins (Siglecs). Whether the sTn-Siglecs axis supports embryo implantation remains unknown. OBJECTIVES This paper aims to study the role of ST6GALNAC1/sTn-Siglecs axis in embryo implantation. METHODS ST6GALNAC1 and sTn in human endometrium were analyzed by immunohistochemistry. An in vitro implantation model was conducted to evaluate the effects of ST6GALNAC1/sTn on the receptivity of human endometrial AN3CA cells to JAR spheroids. Immunoprecipitation combined with mass spectrometry analysis was carried out to identify the key proteins modified by sTn in endometrial cells. Siglec-6 in human embryos was analyzed by published single-cell RNA sequencing (scRNA-seq) datasets. Protein interaction assay was applied to verify the bond between the Siglec-6 with sTn-modified CD44. St6galnac1 siRNAs and anti-sTn antibodies were injected into the uterine horn of the mouse at the pre-implantation stage to evaluate the role of endometrial St6galnac1/sTn in embryo implantation. Siglec-G in murine embryos was analyzed by immunofluorescence staining. The function of Siglec-G is evidenced by uterine horn injection and protein interaction assay. RESULTS Both human and murine endometrium at the receptive stage exhibit higher ST6GALNAC1 and sTn levels compared to the non-receptive stage. Overexpression of ST6GALNAC1 significantly enhanced the receptivity of AN3CA cells to JAR spheroids. Inhibition of endometrial ST6GALNAC1/sTn substantially impaired embryo implantation in vivo. CD44 was identified as a carrier for sTn in the endometrial cells of both species. Siglec-6 and Siglec-G, expressed in the embryonic trophectoderm, were found to promote embryo attachment, which may be achieved through binding with sTn-modified CD44. CONCLUSION ST6GALNAC1-regulated sTn in the endometrium aids in embryo attachment through interaction with trophoblastic Siglecs.
Collapse
Affiliation(s)
- Xinyue Dong
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jinxuan Cai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Yichun Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dezhi Chai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Zichen Sun
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Mengxia Li
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Tianxia Xiao
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Chunhua Shan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Ming Yu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Khan NLA, Muhandiram S, Dissanayake K, Godakumara K, Midekessa G, Andronowska A, Heath PR, Kodithuwakku S, Hart AR, Fazeli A. Effect of 3D and 2D cell culture systems on trophoblast extracellular vesicle physico-chemical characteristics and potency. Front Cell Dev Biol 2024; 12:1382552. [PMID: 38835509 PMCID: PMC11148233 DOI: 10.3389/fcell.2024.1382552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.
Collapse
Affiliation(s)
- Norhayati Liaqat Ali Khan
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA (UiTM), Sg. Buloh, Selangor, Malaysia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paul R Heath
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Amber Rose Hart
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Fang H, Peng Z, Tan B, Peng N, Li B, He D, Xu M, Yang Z. The involvement of PDIA2 gene in the progression of renal cell carcinoma is potentially through regulation of JNK signaling pathway. Clin Transl Oncol 2023; 25:2938-2949. [PMID: 37017923 DOI: 10.1007/s12094-023-03158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients' clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients' survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC.
Collapse
Affiliation(s)
- Huilong Fang
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Zhonglu Peng
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Bin Tan
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Nan Peng
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Biao Li
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Dongyang He
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China.
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Jinan, Shandong, 250013, People's Republic of China.
| | - Zhiying Yang
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China.
| |
Collapse
|
4
|
Fernando SR, Chen X, Cheng KW, Wong BP, Qi S, Jiang L, Kodithuwakku SP, Ng EH, Yeung WS, Lee KF. ACE inhibitors on ACE1, ACE2, and TMPRSS2 expression and spheroid attachment on human endometrial Ishikawa cells. Reprod Biol 2022; 22:100666. [PMID: 35688117 PMCID: PMC9172627 DOI: 10.1016/j.repbio.2022.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells via receptor angiotensin-converting enzyme 2 (ACE2) and co-receptor transmembrane serine protease 2 (TMPRSS2). However, patients with SARS-CoV-2 infection receiving ACE1 inhibitors had higher ACE2 expression and were prone to poorer prognostic outcomes. Until now, information on the expression of ACE1, ACE2, and TMPRSS2 in human endometrial tissues, and the effects of ACE inhibitors on embryo implantation are limited. We found human endometria expressed ACE1, ACE2, and TMPRSS2 transcripts and proteins. Lower ACE1, but higher ACE2 transcripts were found at the secretory than in the proliferative endometria. ACE1 proteins were weakly expressed in endometrial epithelial and stromal cells, whereas ACE2 and TMPRSS2 proteins were highly expressed in luminal and glandular epithelial cells. However, ACE1 and TMPRSS4 were highly expressed in receptive human endometrial epithelial (Ishikawa and RL95–2) cells, but not in non-receptive AN3CA and HEC1-B cells. Treatment of human endometrial epithelial cells with ACE1 (Captopril, Enalaprilat, and Zofenopril) or ACE2 (DX600) inhibitors did not significantly alter the expression of ACE1, ACE2 and TMPRSS2 transcripts and spheroid (blastocyst surrogate) attachment onto Ishikawa cells in vitro. Taken together, our data suggest that higher ACE2 expression was found in mid-secretory endometrium and the use of ACE inhibitors did not alter endometrial receptivity for embryo implantation.
Collapse
Affiliation(s)
- Sudini R Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China; Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Xian Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Benancy Pc Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Shiwen Qi
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China; Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya, Sri Lanka
| | - Ernest Hy Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - William Sb Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China.
| |
Collapse
|
5
|
Fernando SR, Lee CL, Wong BP, Cheng KW, Lee YL, Chan MC, Ng EH, Yeung WS, Lee KF. Expression of membrane protein disulphide isomerase A1 (PDIA1) disrupt a reducing microenvironment in endometrial epithelium for embryo implantation. Exp Cell Res 2021; 405:112665. [PMID: 34111473 DOI: 10.1016/j.yexcr.2021.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Various proteins in the endometrial epithelium are differentially expressed in the receptive phase and play a pivotal role in embryo implantation. The Protein Disulphide Isomerase (PDI) family contains 21 members that function as chaperone proteins through their redox activities. Although total PDIA1 protein expression was high in four common receptive (Ishikawa and RL95-2) and non-receptive (HEC1-B and AN3CA) endometrial epithelial cell lines, significantly higher membrane PDIA1 expression was found in non-receptive AN3CA cells. In Ishikawa cells, oestrogen up-regulated while progesterone down-regulated membrane PDIA1 expression. Moreover, mid-luteal phase hormone treatment down-regulated membrane PDIA1 expression. Furthermore, oestrogen at 10 nM reduced spheroid attachment on Ishikawa cells. Interestingly, inhibition of PDIA1 function by bacitracin or 16F16 increased the spheroid attachment rate onto non-receptive AN3CA cells. Over-expression of PDIA1 in receptive Ishikawa cells reduced the spheroid attachment rate and significantly down-regulated integrin β3 levels, but not integrin αV and E-cadherin. Addition of reducing agent TCEP induced a sulphydryl-rich microenvironment and increased spheroid attachment onto AN3CA cells and human primary endometrial epithelial cells collected at LH+7/8 days. The luminal epithelial cells from human endometrial biopsies had higher PDIA1 protein expression in the proliferative phase than in the secretory phase. Our findings suggest oestrogen and progesterone regulate PDIA1 expression, resulting in the differential expressions of membrane PDIA1 protein to modulate endometrial receptivity. This suggests that membrane PDIA1 expression prior to embryo transfer could be used to predict endometrial receptivity and embryo implantation in women undergoing assisted reproduction treatment.
Collapse
Affiliation(s)
- Sudini R Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Animal Science, Faculty of Animal Science & Export Agriculture, Uva Wellassa University, Badulla, 50000, Sri Lanka
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Benancy Pc Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Ming-Chung Chan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ernest Hy Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - William Sb Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China.
| |
Collapse
|