1
|
Zhang X, Wu Y, Zhang Y, Zhang J, Chu P, Chen K, Liu H, Luo Q, Fei S, Zhao J, Ou M. Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis. Biol Sex Differ 2024; 15:70. [PMID: 39244546 PMCID: PMC11380785 DOI: 10.1186/s13293-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Zhong H, Guo Z, Xiao J, Zhang H, Luo Y, Liang J. Comprehensive Characterization of Circular RNAs in Ovary and Testis From Nile Tilapia. Front Vet Sci 2022; 9:847681. [PMID: 35464370 PMCID: PMC9019548 DOI: 10.3389/fvets.2022.847681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is an endogenous biomolecule in eukaryotes. It has tissue- and cell-specific expression patterns and can act as a microRNA sponge or competitive endogenous RNA. Although circRNA has been found in several species in recent years, the expression profiles in fish gonad are still not fully understood. We detected the expression of circRNA in the ovary, testis, and sex-changed gonad of tilapia by high-throughput deep sequencing, and circRNA-specific computing tools. A total of 20,607 circRNAs were obtained, of which 141 were differentially expressed in the testis and ovary. Among these circRNAs, 135 circRNAs were upregulated and 6 circRNAs were downregulated in female fish. In addition, GO annotation and KEGG pathway analysis of the host genes of circRNAs indicated that these host genes were mainly involved in adherens junction, androgen production, and reproductive development, such as ZP3, PLC, delta 4a, ARHGEF10, and HSD17b3. It is worth noting that we found that circRNAs in tilapia gonads have abundant miRNA-binding sites. Among them, 935 circRNAs have a regulatory effect on miR-212, 856 circRNAs have a regulatory effect on miR-200b-3p, and 529 circRNAs have a regulatory effect on miR-200b-5p. Thus, our findings provide a new evidence for circRNA–miRNA networks in the gonads in tilapia.
Collapse
Affiliation(s)
- Huan Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhongbao Guo
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
- *Correspondence: Jun Xiao
| | - Hong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, China
| | - Yongju Luo
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Junneng Liang
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
3
|
Anitha A, Senthilkumaran B. sox19 regulates ovarian steroidogenesis in common carp. J Steroid Biochem Mol Biol 2022; 217:106044. [PMID: 34915169 DOI: 10.1016/j.jsbmb.2021.106044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
In teleost, ovarian steroidogenesis governed by the neuroendocrine system is also regulated by several transcription factors of gonadal origin. Investigating the synchronized interactions between the transcriptional and the hormonal factors is vital to comprehend the mechanisms that lead to gonadal differentiation. This study signifies the role of sry-related box (sox) 19 in ovarian steroidogenesis regulation of the common carp, Cyprinus carpio. Analysis of tissue distribution displayed higher sox19 expression in brain and ovary, and gonadal ontogeny showed higher expression of sox19 at 80 days post hatch (dph). Higher sox19 mRNA expression during spawning and increase of sox19 post human chorionic gonadotropin induction substantiate gonadotropin dependency. Estradiol-17β treatment but not 17α-methyl-di-hydroxy-testosterone to 50 dph common carp for inducing mono-sex, elevated sox19 expression substantially. Sox19 protein was observed in granulosa cells of the follicular layer in common carp ovary. Higher sox19 expression was detected in isolated granulosa and theca cells, in vitro. Transient gene silencing with sox19-siRNA caused downregulation of various ovary-related genes including those specific to activator protein-1 factors, fibroblast growth factors, wnt-signaling, steroidogenic genes along with certain transcription factors. Serum 17α, 20β-dihydroxy-4-pregnen-3-one and estradiol-17β reduced significantly post sox19 silencing, in vivo. Concomitantly, a decrease in aromatase activity was detected post sox19-siRNA treatment, in vivo. This study demonstrates the impact of sox19 in the regulation of common carp ovarian growth and steroidogenesis.
Collapse
Affiliation(s)
- Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
4
|
Wang Y, Luo X, Qu C, Xu T, Zou G, Liang H. The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11010083. [PMID: 35053081 PMCID: PMC8773217 DOI: 10.3390/biology11010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 04/08/2023]
Abstract
The Chinese soft-shelled turtle Pelodiscus sinensis shows obvious sexual dimorphism. The economic and nutrition value of male individuals are significantly higher than those of female individuals. Pseudo-females which are base to all-male breeding have been obtained by estrogen induction, while the gene function and molecular mechanism of sex reversal remain unclear in P. sinensis. Here, comparative transcriptome analyses of female, male, and pseudo-female gonads were performed, and 14,430 genes differentially expressed were identified in the pairwise comparison of three groups. GO and KEGG analyses were performed on the differentially expressed genes (DEGs), which mainly concentrated on steroid hormone synthesis. Furthermore, the results of gonadal transcriptome analysis revealed that 10 sex-related sox genes were differentially expressed in males vs. female, male vs. pseudo-female, and female vs. pseudo-female. Through the differential expression analysis of these 10 sox genes in mature gonads, six sox genes related to sex reversal were further screened. The molecular mechanism of the six sox genes in the embryo were analyzed during sex reversal after E2 treatment. In mature gonads, some sox family genes, such as sox9sox12, and sox30 were highly expressed in the testis, while sox1, sox3, sox6, sox11, and sox17 were lowly expressed. In the male embryos, exogenous estrogen can activate the expression of sox3 and inhibit the expression of sox8, sox9, and sox11. In summary, sox3 may have a role in the process of sex reversal from male to pseudo-female, when sox8 and sox9 are inhibited. Sox family genes affect both female and male pathways in the process of sex reversal, which provides a new insight for the all-male breeding of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Yubin Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
| | - Xiangzhong Luo
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
| | - Chunjuan Qu
- Bengbu Aquatic Technology Promotion Center, Bengbu 233000, China;
| | - Tao Xu
- College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China;
| | - Guiwei Zou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|