1
|
Liu X, Dong M, Li T, Wang J. Correlation of circulating fibroblast growth factor 21 levels with inflammatory factors and the degree of coronary artery stenosis in patients with acute myocardial infarction. Cytokine 2024; 178:156591. [PMID: 38554500 DOI: 10.1016/j.cyto.2024.156591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a secreted protein that plays an important role in atherosclerosis and pathological cardiac remodeling. However, the correlation between FGF21 and the degree of coronary artery stenosis and its potential role in acute myocardial infarction (AMI) remain unclear. We examined whether changes in FGF21 levels in AMI correlate with the degree of coronary artery stenosis and the levels of inflammatory factors, and preliminarily investigated the effects of FGF21 on inflammatory factor levels and myocardial injury in rats with AMI. METHODS Serum levels of FGF21 and inflammatory factors in the AMI group and control group were measured, and the correlation between FGF21 and clinical indicators and inflammatory factors was analyzed. The effects of FGF21 on cardiac function and inflammatory response were evaluated through echocardiography and measurement of inflammatory factors. RESULTS Multivariate logistic regression analysis showed that neutrophil percentage (NEUT%, odds ratio [OR]: 1.232; 95 % confidence interval [CI]: 1.028-1.477; p = 0.024) and FGF21 levels (OR: 2.063; 95 % CI: 1.187-3.586; p = 0.01) had independent effects on AMI. Spearman's rank correlation test showed that FGF21 levels were positively correlated with leukocyte count, NEUT%, neutrophil count, neutrophil to lymphocyte ratio, C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and Gensini scores (p < 0.01), but negatively correlated with lymphocyte count (p < 0.01). FGF21 levels in myocardial tissues and serum levels of FGF21, IL-6, TNF-a, and MCP-1 were significantly higher in AMI rats than in the sham-operated group (p < 0.01). After overexpression of FGF21, serum levels of IL-6, TNF-a, and MCP-1 in rats were significantly decreased (p < 0.01), and cardiac function improved significantly. CONCLUSIONS FGF21 levels were independently associated with AMI and may be related to the severity of coronary artery stenosis. Overexpression of FGF21 reduced serum inflammatory factor levels and improved cardiac function in AMI rats.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Mengying Dong
- Departments of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Tianyi Li
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
2
|
Lin M, Wang B, Wei B, Li C, Tu L, Zhu X, Wu Z, Huang G, Lu X, Xiong G, Lu S, Yang X, Li P, Liu X, Li W, Lu Y, Zhou H. Characteristics, prognostic determinants of monocytes, macrophages and T cells in acute coronary syndrome: protocol for a multicenter, prospective cohort study. BMC Cardiovasc Disord 2023; 23:220. [PMID: 37118659 PMCID: PMC10148483 DOI: 10.1186/s12872-023-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Acute coronary syndrome(ACS) is the leading cause of mortality and disability worldwide. Immune response has been confirmed to play a vital role in the occurrence and development of ACS. The objective of this prospective, multicenter, observational study is to define immune response and their relationship to the occurrence and progressive of ACS. METHODS This is a multicenter, prospective, observational longitudinal cohort study. The primary outcome is the incidence of major adverse cardiovascular events (MACE) including in-stent restenosis, severe ventricular arrhythmia, heart failure, recurrent angina pectoris, and sudden cardiac death, and stroke one year later after ACS. Demographic characteristics, clinical data, treatments, and outcomes are collected by local investigators. Furthermore, freshly processed samples will be stained and assessed by flow cytometry. The expression of S100A4, CD47, SIRPα and Tim-3 on monocytes, macrophages and T cells in ACS patients were collected. FOLLOW-UP during hospitalization, 3, 6 and 12 months after discharge. DISCUSSION It is expected that this study will reveal the possible targets to improve the prognosis or prevent from occurrence of MACE in ACS patients. Since it's a multicenter study, the enrollment rate of participants will be accelerated and it can ensure that the collected data are more symbolic and improve the richness and credibility of the test basis. ETHICS AND DISSEMINATION This study has been registered in Chinese Clinical Trial Registry Center. Ethical approval was obtained from the Affiliated Hospital of Guizhou Medical University. The dissemination will occur through the publication of articles in international peer-reviewed journals. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR2200066382.
Collapse
Affiliation(s)
- Muzhi Lin
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Bing Wang
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Wei
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Li
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lin Tu
- Internal Medicine-Cardiovascular Department, The First People's Hospital of Guiyang, Guiyang, 550000, Guizhou, China
| | - Xiaohan Zhu
- Department of Cardiology, The Second People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Zheyi Wu
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guangwei Huang
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiyang Lu
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guobao Xiong
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Shanglin Lu
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Xinglin Yang
- Department of Clinical Laboratory, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
| | - Peng Li
- Science and Education Division, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
| | - Xingde Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wei Li
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yuming Lu
- Internal Medicine-Cardiovascular Department, The First People's Hospital of Guiyang, Guiyang, 550000, Guizhou, China.
| | - Haiyan Zhou
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
3
|
Peterson EA, Sun J, Wang J. Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. J Cardiovasc Dev Dis 2022; 9:63. [PMID: 35200716 PMCID: PMC8877434 DOI: 10.3390/jcdd9020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Innate and adaptive leukocytes rapidly mobilize to ischemic tissues after myocardial infarction in response to damage signals released from necrotic cells. Leukocytes play important roles in cardiac repair and regeneration such as inflammation initiation and resolution; the removal of dead cells and debris; the deposition of the extracellular matrix and granulation tissue; supporting angiogenesis and cardiomyocyte proliferation; and fibrotic scar generation and resolution. By organizing and comparing the present knowledge of leukocyte recruitment and function after cardiac injury in non-regenerative to regenerative systems, we propose that the leukocyte response to cardiac injury differs in non-regenerative adult mammals such as humans and mice in comparison to cardiac regenerative models such as neonatal mice and adult zebrafish. Specifically, extensive neutrophil, macrophage, and T-cell persistence contributes to a lengthy inflammatory period in non-regenerative systems for adverse cardiac remodeling and heart failure development, whereas their quick removal supports inflammation resolution in regenerative systems for new contractile tissue formation and coronary revascularization. Surprisingly, other leukocytes have not been examined in regenerative model systems. With this review, we aim to encourage the development of improved immune cell markers and tools in cardiac regenerative models for the identification of new immune targets in non-regenerative systems to develop new therapies.
Collapse
Affiliation(s)
| | | | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.A.P.); (J.S.)
| |
Collapse
|