1
|
Sánchez-Jaramillo E, Sánchez-Islas E, Gómez-González GB, Yáñez-Recendis N, Mucio-Ramírez S, Barbaro F, Toni R, León-Olea M. Perinatal exposure to Aroclor 1254 disrupts thyrotropin-releasing hormone mRNA expression in the paraventricular nucleus of male and female rats. Toxicology 2024; 508:153935. [PMID: 39182713 DOI: 10.1016/j.tox.2024.153935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Polychlorinated biphenyls (PCBs) are industrial pollutants that act as endocrine disruptors and alter thyroid function. However, it is still unclear whether PCBs can affect hypothalamic thyrotropin releasing hormone (Trh) mRNA expression through TH signaling disruption. As salt-loading dehydration induces tertiary hypothyroidism in the hypothalamic parvocellular paraventricular nuclei (paPVN), and perinatal exposure to Aroclor 1254 (A1254) disrupts the hydric balance in rats, we hypothesized that TRH synthesis could be altered during dehydration in TRH neurons that control the hypothalamic-pituitary-thyroid (HPT) axis activity in rats perinatally exposed to A1254. We examined Trh mRNA expression in the paPVN and the response to salt-loading dehydration (hyperosmotic (hyper) stress) in the progeny of Wistar pregnant rats receiving 0 mg/kg BW (control) or 30 mg/kg BW A1254 daily from gestational days 10-19. Three-month-old offspring were subjected to normosmotic or hyper conditions and Trh mRNA, glucocorticoid receptor (GR) mRNA expression were measured in the PVN by RT-PCR. TRH mRNA and TRH+ neurons were measured in the paPVN by fluorescent in situ hybridization (FISH). As expected, Trh mRNA levels were decreased in the paPVN of male and female rats in the hyper group. Basal Trh mRNA expression and serum TSH were decreased in male rats in the A1254 group. Notably, Trh mRNA levels were further decreased in the paPVN of male and female A1254 + hyper rats, in which the GR mRNA expression was significantly decreased. These results support the hypothesis that perinatal exposure to A1254 results in inadequate adaptive response of the HPT axis in adulthood and contributes to dysregulation of the HPT axis response to salt-loading dehydration.
Collapse
Affiliation(s)
- Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Gabriela B Gómez-González
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Nashiely Yáñez-Recendis
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Fulvio Barbaro
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Unit of Biomedical, Biotechnological and Translational Sciences, Section of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Toni
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Unit of Biomedical, Biotechnological and Translational Sciences, Section of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy; Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| |
Collapse
|
2
|
Sheu ML, Pan LY, Yang CN, Sheehan J, Pan LY, You WC, Wang CC, Pan HC. Thrombin-Induced Microglia Activation Modulated through Aryl Hydrocarbon Receptors. Int J Mol Sci 2023; 24:11416. [PMID: 37511175 PMCID: PMC10380349 DOI: 10.3390/ijms241411416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Thrombin is a multifunctional serine protein which is closely related to neurodegenerative disorders. The Aryl hydrocarbon receptor (AhR) is well expressed in microglia cells involving inflammatory disorders of the brain. However, it remains unclear as to how modulation of AhR expression by thrombin is related to the development of neurodegeneration disorders. In this study, we investigated the role of AhR in the development of thrombin-induced neurodegenerative processes, especially those concerning microglia. The primary culture of either wild type or AhR deleted microglia, as well as BV-2 cell lines, was used for an in vitro study. Hippocampal slice culture and animals with either wild type or with AhR deleted were used for the ex vivo and in vivo studies. Simulations of ligand protein docking showed a strong integration between the thrombin and AhR. In thrombin-triggered microglia cells, deleting AhR escalated both the NO release and iNOS expression. Such effects were abolished by the administration of the AhR agonist. In thrombin-activated microglia cells, downregulating AhR increased the following: vascular permeability, pro-inflammatory genetic expression, MMP-9 activity, and the ratio of M1/M2 phenotype. In the in vivo study, thrombin induced the activation of microglia and their volume, thereby contributing to the deterioration of neurobehavior. Deleting AhR furthermore aggravated the response in terms of impaired neurobehavior, increasing brain edema, aggregating microglia, and increasing neuronal death. In conclusion, thrombin caused the activation of microglia through increased vessel permeability, expression of inflammatory response, and phenotype of M1 microglia, as well the MMP activity. Deleting AhR augmented the above detrimental effects. These findings indicate that the modulation of AhR is essential for the regulation of thrombin-induced brain damages and that the AhR agonist may harbor the potentially therapeutic effect in thrombin-induced neurodegenerative disorder.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Liang-Yi Pan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA;
| | - Liang-Yu Pan
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 40210, Taiwan;
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan;
| | - Hung-Chuan Pan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40210, Taiwan
| |
Collapse
|
3
|
Modulation of Aryl Hydrocarbon Receptor Expression Alleviated Neuropathic Pain in a Chronic Constriction Nerve Injury Animal Model. Int J Mol Sci 2022; 23:ijms231911255. [PMID: 36232555 PMCID: PMC9570158 DOI: 10.3390/ijms231911255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Neuropathic pain is well known to occur after damage to the somatosensory system. Aryl hydrocarbon receptor (AhR) has neuroprotective effects when the central nervous system is subjected to internal and external stimulations. However, the exact mechanism by which AhR regulates neuropathic pain is poorly understood. Nerve explant culture and the chronic constrictive nerve injury (CCI) model in wild or AhR-knockout mice were used in this study. In the nerve explant culture, the ovoid number increased in the AhR−/− condition and was decreased by omeprazole (AhR agonist) in a dose-dependent manner. Increased nerve degeneration and the associated inflammation response appeared in the AhR−/− condition, and these changes were attenuated by omeprazole. High expression of AhR in the injured nerve was noted after CCI. Deletion of AhR aggravated nerve damages and this was restored by omeprazole. Deletion of AhR increased NGF expression and reduced axon number in the paw skin, but this was attenuated by omeprazole. A highly expressed inflammation reaction over the dorsal spinal cord, somatosensory cortex, and hippocampus was noted in the AhR-deleted animals. Administration of omeprazole attenuated not only the inflammatory response, but also the amplitude of somatosensory evoked potential. Deletion of AhR further aggravated the neurobehavior compared with the wild type, but such behavior was attenuated by omeprazole. Chronic constrictive nerve injury augmented AhR expression of the injured nerve, and AhR deletion worsened the damage, while AhR agonist omeprazole counteracted such changes. AhR agonists could be potential candidates for neuropathic pain treatment.
Collapse
|
4
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
5
|
Zhou Y, Zhao WJ, Quan W, Qiao CM, Cui C, Hong H, Shi Y, Niu GY, Zhao LP, Shen YQ. Dynamic changes of activated AHR in microglia and astrocytes in the substantia nigra-striatum system in an MPTP-induced Parkinson's disease mouse model. Brain Res Bull 2021; 176:174-183. [PMID: 34478811 DOI: 10.1016/j.brainresbull.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 01/19/2023]
Abstract
Aryl Hydrocarbon Receptor (AHR) is a ligand-activated transcription factor expressed in various brain regions. However, little is known about the role of AHR during neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Here, mice were sacrificed at day 4, day 6 and day 8 respectively after MPTP or saline treatment. Behavioral tests, Tyrosine hydroxylase (TH) expression, glial reaction, and AHR expression and activation were then assayed. As expected, mice treated with MPTP showed apparent behavioral dysfunctions and significantly reduced TH content. Immunofluorescence (IF) labeling showed an increased trend of phosphorylated AHR activation in the Substantia Nigra pars compacta (SNpc) and striatum after MPTP treatment. Western blot analysis demonstrated that MPTP treatment induced a significantly increased level of AHR at each time point tested, with the highest level observed at day 6 in the striatum. To determine exactly the AHR activation in relation to changes of glial cell reactivity, double IF labeling was performed for either IBA1 (microglia marker) and p-AHR, or GFAP (astrocyte marker) and p-AHR. The results demonstrated that MPTP treatment not only increases the number of p-AHR-positive IBA1-expressing cells in the striatum and the SNpc, but also increases that of p-AHR-positive GFAP-expressing cells in the striatum. Intriguingly, the increase of the number of cells co-expressing both p-AHR and IBA1 was highest at day 4 in response to MPTP in the striatum and at day 8 in the SNpc. The number of cells co-expressing both p-AHR and GFAP was increased at days 4, 6 and 8 in the striatum. In conclusion, our study suggests that AHR activation may facilitate PD diagnosis and serve as a target for the treatment of PD.
Collapse
Affiliation(s)
- Yu Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| | - Wei Quan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Meng Qiao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Hong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Gu-Yu Niu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Li-Ping Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan-Qin Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Thangavelu SK, Mohan M, Ramachandran I, Jagadeesan A. Lactational polychlorinated biphenyls exposure induces epigenetic alterations in the Leydig cells of progeny rats. Andrologia 2021; 53:e14160. [PMID: 34241921 DOI: 10.1111/and.14160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022] Open
Abstract
The present study was designed to establish the epigenetic mechanisms by which lactational exposure to PCBs affects the Leydig cell function in progeny rats. The lactating dams were oral gavaged with different doses of PCBs [1, 2 and 5 mg/kg or corn oil ] and Leydig cells were isolated from the testes of progeny rats at postnatal day (PND) 60. We assessed the expression of transcription factors regulating steroidogenic machinery and the promoter methylation of LHR and AR in the Leydig cells. Our results confirmed hypermethylation of SF-1, Sp1/3, LHR and AR genes. There was a significant reduction in the gene expression of SF-1 and Sp1. The mRNA expression of Sp3 was decreased. Interestingly, there was an increased gene expression levels of DNA methyltransferases (Dnmts) (Dnmt1, Dnmt3a/b and Dnmt3l) and unaltered histone deacetylase-1 (Hdac-1). Furthermore, increased percentage of 5-methylcytosine was observed in PCBs exposed Leydig cells. Taken together, our findings suggest that promoter hypermethylation of SF-1, Sp1/3, LHR and AR could have led to transcriptional repression of these genes in Leydig cells. In conclusion, our study demonstrates that lactational exposure to PCBs caused epigenetic changes in the Leydig cells which could have impaired the Leydig cell function in progeny (PND60) rats.
Collapse
Affiliation(s)
- Sathish Kumar Thangavelu
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Manju Mohan
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Arunakaran Jagadeesan
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Wong CB, Tanaka A, Kuhara T, Xiao JZ. Potential Effects of Indole-3-Lactic Acid, a Metabolite of Human Bifidobacteria, on NGF-induced Neurite Outgrowth in PC12 Cells. Microorganisms 2020; 8:E398. [PMID: 32178456 PMCID: PMC7143819 DOI: 10.3390/microorganisms8030398] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota-derived tryptophan metabolites such as indole derivatives are an integral part of host metabolome that could mediate gut-brain communication and contribute to host homeostasis. We previously reported that infant-type Human-Residential Bifidobacteria (HRB) produced higher levels of indole-3-lactic acid (ILA), suggesting the former might play a specific role in microbiota-host crosstalk by producing ILA in human infants. Nonetheless, the biological meaning of bifidobacteria-derived ILA in infant health development remains obscure. Here, we sought to explore the potential role of ILA in neuronal differentiation. We examined the neurite outgrowth and acetylcholinesterase (AchE) activity of PC12 cells following exposure to ILA and NGF induction. We found that ILA substantially enhanced NGF-induced neurite outgrowth of PC12 cells in a dose-dependent manner, and had the most prominent effect at 100 nM. Significant increases in the expression of TrkA receptor, ERK1/2 and CREB were observed in ILA-treated PC12 cells, suggesting ILA potentiated NGF-induced neurite outgrowth through the Ras/ERK pathway. Additionally, ILA was found to act as the aryl hydrocarbon receptor (AhR) agonist and evoked NGF-induced neurite outgrowth in an AhR-mediated manner. These new findings provide clues into the potential involvement of ILA as the mediator in bifidobacterial host-microbiota crosstalk and neuronal developmental processes.
Collapse
Affiliation(s)
| | | | | | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (C.B.W.); (A.T.); (T.K.)
| |
Collapse
|
8
|
Gore AC, Krishnan K, Reilly MP. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm Behav 2019; 111:7-22. [PMID: 30476496 PMCID: PMC6527472 DOI: 10.1016/j.yhbeh.2018.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
A contribution to SBN/ICN special issue. Endocrine-disrupting chemicals (EDCs) are pervasive in the environment. They are found in plastics and plasticizers (bisphenol A (BPA) and phthalates), in industrial chemicals such as polychlorinated biphenyls (PCBs), and include some pesticides and fungicides such as vinclozolin. These chemicals act on hormone receptors and their downstream signaling pathways, and can interfere with hormone synthesis, metabolism, and actions. Because the developing brain is particularly sensitive to endogenous hormones, disruptions by EDCs can change neural circuits that form during periods of brain organization. Here, we review the evidence that EDCs affect developing hypothalamic neuroendocrine systems, and change behavioral outcomes in juvenile, adolescent, and adult life in exposed individuals, and even in their descendants. Our focus is on social, communicative and sociosexual behaviors, as how an individual behaves with a same- or opposite-sex conspecific determines that individual's ability to exist in a community, be selected as a mate, and reproduce successfully.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
10
|
Thangavelu SK, Elaiyapillai SP, Ramachandran I, Bhaskaran RS, Jagadeesan A. Lactational exposure of polychlorinated biphenyls impair Leydig cellular steroidogenesis in F1 progeny rats. Reprod Toxicol 2018; 75:73-85. [DOI: 10.1016/j.reprotox.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
|
11
|
Bellingham M, Fowler PA, MacDonald ES, Mandon‐Pepin B, Cotinot C, Rhind S, Sharpe RM, Evans NP. Timing of Maternal Exposure and Foetal Sex Determine the Effects of Low-level Chemical Mixture Exposure on the Foetal Neuroendocrine System in Sheep. J Neuroendocrinol 2016; 28:10.1111/jne.12444. [PMID: 27870155 PMCID: PMC5621486 DOI: 10.1111/jne.12444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
We have shown that continuous maternal exposure to the complex mixture of environmental chemicals (ECs) found in human biosolids (sewage sludge), disrupts mRNA expression of genes crucial for development and long-term regulation of hypothalamic-pituitary gonadal (HPG) function in sheep. The present study investigated whether exposure to ECs only during preconceptional period or only during pregnancy perturbed key regulatory genes within the hypothalamus and pituitary gland and whether these effects were different from chronic (life-long) exposure to biosolid ECs. The findings demonstrate that the timing and duration of maternal EC exposure influences the subsequent effects on the foetal neuroendocrine system in a sex-specific manner. Maternal exposure prior to conception, or during pregnancy only, altered the expression of key foetal neuroendocrine regulatory systems such as gonadotrophin-releasing hormone and kisspeptin to a greater extent than when maternal exposure was 'life-long'. Furthermore, hypothalamic gene expression was affected to a greater extent in males than in females and, following EC exposure, male foetuses expressed more 'female-like' mRNA levels for some key neuroendocrine genes. This is the first study to show that 'real-life' maternal exposure to low levels of a complex cocktail of chemicals prior to conception can subsequently affect the developing foetal neuroendocrine system. These findings demonstrate that the developing neuroendocrine system is sensitive to EC mixtures in a sex-dimorphic manner likely to predispose to reproductive dysfunction in later life.
Collapse
Affiliation(s)
- M. Bellingham
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - P. A. Fowler
- Division of Applied MedicineCentre for Reproductive Endocrinology and MedicineInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - E. S. MacDonald
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - C. Cotinot
- UMR BDRUniversite Paris SaclayParisFrance
| | - S. Rhind
- James Hutton InstituteAberdeenUK
| | - R. M. Sharpe
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - N. P. Evans
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
12
|
Gore AC, Martien KM, Gagnidze K, Pfaff D. Implications of prenatal steroid perturbations for neurodevelopment, behavior, and autism. Endocr Rev 2014; 35:961-91. [PMID: 25211453 PMCID: PMC4234775 DOI: 10.1210/er.2013-1122] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 08/29/2014] [Indexed: 12/16/2022]
Abstract
The prenatal brain develops under the influence of an ever-changing hormonal milieu that includes endogenous fetal gonadal and adrenal hormones, placental and maternal hormones, and exogenous substances with hormonal activity that can cross the placental barrier. This review discusses the influences of endogenous fetal and maternal hormones on normal brain development and potential consequences of pathophysiological hormonal perturbations to the developing brain, with particular reference to autism. We also consider the effects of hormonal pharmaceuticals used for assisted reproduction, the maintenance of pregnancy, the prevention of congenital adrenal hypertrophy, and hormonal contraceptives continued into an unanticipated pregnancy, among others. These treatments, although in some instances life-saving, may have unintended consequences on the developing fetuses. Additional concern is raised by fetal exposures to endocrine-disrupting chemicals encountered universally by pregnant women from food/water containers, contaminated food, household chemicals, and other sources. What are the potential outcomes of prenatal steroid perturbations on neurodevelopmental and behavioral disorders, including autism-spectrum disorders? Our purposes here are 1) to summarize some consequences of steroid exposures during pregnancy for the development of brain and behavior in the offspring; 2) to summarize what is known about the relationships between exposures and behavior, including autism spectrum disorders; 3) to discuss the molecular underpinnings of such effects, especially molecular epigenetic mechanisms of prenatal steroid manipulations, a field that may explain effects of direct exposures, and even transgenerational effects; and 4) for all of these, to add cautionary notes about their interpretation in the name of scientific rigor.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology (A.C.G.), University of Texas at Austin, Austin, Texas 78712; Massachusetts General Hospital for Children (K.M.M.), Lexington, Massachusetts, 02421; and Laboratory of Neurobiology and Behavior (K.G., D.P.), Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
13
|
Naveau E, Pinson A, Gérard A, Nguyen L, Charlier C, Thomé JP, Zoeller RT, Bourguignon JP, Parent AS. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls. PLoS One 2014; 9:e91903. [PMID: 24642964 PMCID: PMC3958407 DOI: 10.1371/journal.pone.0091903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/17/2014] [Indexed: 01/23/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.
Collapse
Affiliation(s)
- Elise Naveau
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Anneline Pinson
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Laurent Nguyen
- Developmental Neurobiology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liège, CHU, Liège, Belgium
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology (LEAE, CART), University of Liège, Liège, Belgium
| | - R Thomas Zoeller
- Biology Department, University of Massachusetts, Morrill Science Center, Amherst, Massachusetts, United States of America
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Anne-Simone Parent
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| |
Collapse
|
14
|
Selvakumar K, Krishnamoorthy G, Venkataraman P, Arunakaran J. Reactive oxygen species induced oxidative stress, neuronal apoptosis and alternative death pathways. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.41003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Marquez EC, Traylor-Knowles N, Novillo-Villajos A, Callard IP. Novel cDNA sequences of aryl hydrocarbon receptors and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:305-17. [PMID: 21763458 PMCID: PMC3176672 DOI: 10.1016/j.cbpc.2011.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
Reproductive changes have been observed in painted turtles from a site with known contamination located on Cape Cod, MA, USA. We hypothesize that these changes are caused by exposure to endocrine-disrupting compounds and that genes involved in reproduction are affected. The aryl hydrocarbon receptor (AHR) is an orphan receptor that is activated by environmental contaminants. AHR mRNA was measured in turtles exposed to soil collected from a contaminated site. Adult turtles were trapped from the study site (Moody Pond, MP) or a reference site and exposed to laboratory environments containing soil from either site. The red-eared slider was used to assess neonatal exposure to soil and water from the sites. The environmental exposures occurred over a 13-month period. Juveniles showed an age-dependent increase in brain AHR1. Juvenile turtles exposed to the MP environment had elevated gonadal AHR1. Adult turtles exposed to the MP environment showed significantly decreased brain AHR2. The painted turtle AHR is the first complete reptile AHR cDNA sequence. Phylogenetic analysis of the painted turtle AHR showed that it clusters with other AHR2s. Partial AHR1 and partial AHR2 cDNA sequences were cloned from the red-eared slider. MEME analysis identified 18 motifs in the turtle AHRs, showing high conservation between motifs that overlapped functional regions in both AHR isoforms.
Collapse
Affiliation(s)
| | | | | | - Ian P. Callard
- Boston University Department of Biology, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
17
|
Colciago A, Casati L, Mornati O, Vergoni A, Santagostino A, Celotti F, Negri-Cesi P. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat. Toxicol Appl Pharmacol 2009; 239:46-54. [DOI: 10.1016/j.taap.2009.04.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 01/05/2023]
|
18
|
Bonfanti P, Colombo A, Villa S, Comelli F, Costa B, Santagostino A. The effects of accumulation of an environmentally relevant polychlorinated biphenyl mixture on cytochrome P450 and P-glycoprotein expressions in fetuses and pregnant rats. CHEMOSPHERE 2009; 75:572-579. [PMID: 19264347 DOI: 10.1016/j.chemosphere.2009.01.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/19/2008] [Accepted: 01/24/2009] [Indexed: 05/27/2023]
Abstract
The aim of this study was to improve knowledge about transplacental transfer of an environmentally relevant PCB mixture by evaluating congener levels in livers and brains of rat dams and fetuses after maternal exposure, and correlating them to the levels of CYP450 and P-glycoprotein, involved in biotransformation and xenobiotics export, respectively. Pregnant dams were injected daily from gestation day (GD) 15 to 19 with 10mgkg(-1) of a reconstituted mixture (RM) composed of PCB138, 153, 180 and 126. Our data indicate that at GD20 RM is partitioned among maternal tissues, and that fetuses are not excluded from this distribution, evidencing a placental transfer of PCBs. Considering the ratio of maternal and fetal PCB concentrations based on lipid-weight, the amounts of congeners were 7-fold lower in fetal livers than in maternal livers and 25-30-fold higher in fetal brains than in maternal ones. Moreover, in dams the congeners were able to induce hepatic CYP450 response (total CYP450, CYP1A and CYP2B), but failed to increase P-170 expression, while in fetuses the constitutive expression of CYP450 and P-170 was not induced by treatment. Pearson Product-Moment Correlation applied to treated group data suggests that PCB accumulation in fetal livers, but not in brains, depended principally on their mothers' intoxication pattern. On the whole, these results emphasize the maternal liver and the fetal brain as depot organs for PCB sequestration and their susceptibility towards PCB toxicological risk. Moreover they highlight the lack of a coordinated response between the investigated defence mechanism.
Collapse
Affiliation(s)
- Patrizia Bonfanti
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Anita Colombo
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Sara Villa
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesca Comelli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Barbara Costa
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Angela Santagostino
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
19
|
Gore AC. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 2008; 29:358-74. [PMID: 18394690 PMCID: PMC2702520 DOI: 10.1016/j.yfrne.2008.02.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 01/01/2023]
Abstract
The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as develop the potential ability to intervene when development is disrupted.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Negri-Cesi P, Colciago A, Pravettoni A, Casati L, Conti L, Celotti F. Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences. J Steroid Biochem Mol Biol 2008; 109:294-9. [PMID: 18403198 DOI: 10.1016/j.jsbmb.2008.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain sexual differentiation is a complex developmental phenomenon influenced by the genetic background, sex hormone secretions and environmental inputs, including pollution. The main hormonal drive to masculinize and defeminize the rodent brain is testosterone secreted by the testis. The hormone does not influence sex brain differentiation only in its native configuration, but it mostly needs local conversion into active metabolites (estradiol and DHT) through the action of specific enzymatic systems: the aromatase and 5alpha-reductase (5alpha-R), respectively. This allows the hormone to control target cell gene expression either through the estrogen (ER) or the androgen (AR) receptors. The developmental profile of testosterone metabolizing enzymes, different in the two sexes, is therefore of the utmost importance in affecting the bioavailability of the steroids active in brain differentiation. Widely diffused pollutants, like polychlorinated biphenyls (PCBs) are able to affect the production and/or action of testosterone metabolites, exerting detrimental influences on reproduction and sex behavior. The main studies performed in our and other laboratories concerning the pattern of expression and the control of the enzymatic systems involved in brain androgen action and metabolism are shortly reviewed. Some recent data on the influence exerted by PCBs on these metabolic systems are also reported.
Collapse
Affiliation(s)
- Paola Negri-Cesi
- Department of Endocrinology, University of Milano, via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Dickerson SM, Gore AC. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord 2007; 8:143-59. [PMID: 17674209 DOI: 10.1007/s11154-007-9048-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with the normal function of an organism's endocrine system. Many EDCs are resistant to biodegradation, due to their structural stability, and persist in the environment. The focus of this review is on natural and artificial EDCs that act through estrogenic mechanisms to affect reproductive neuroendocrine systems. This endocrine axis comprises the hypothalamic gonadotropin-releasing hormone (GnRH), pituitary gonadotropins, and gonadal steroid hormones, including estrogens. Although it is not surprising that EDCs that mimic or antagonize estrogen receptors may exert actions upon reproductive targets, the mechanisms for these effects are complex and involve all three levels of the hypothalamic-pituitary-gonadal (HPG) system. Nevertheless, considerable evidence links exposure to estrogenic environmental EDCs with neuroendocrine reproductive deficits in wildlife and in humans. The effects of an EDC are variable across the life cycle of an animal, and are particularly potent when exposure occurs during fetal and early postnatal development. As a consequence, abnormal sexual differentiation, disrupted reproductive function, or inappropriate sexual behavior may be detected later in life. This review will cover the effects of two representative classes of estrogenic EDCs, phytoestrogens and polychlorinated biphenyls (PCBs), on neuroendocrine reproductive function, from molecules to behavior, across the vertebrate life cycle. Finally, we identify the gaps of knowledge in this field and suggest future directions for study.
Collapse
Affiliation(s)
- Sarah M Dickerson
- Division of Pharmacology and Toxicology, The University of Texas at Austin, P.O. Box A1915, Austin, TX 78712, USA.
| | | |
Collapse
|
22
|
Steinberg RM, Juenger TE, Gore AC. The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Horm Behav 2007; 51:364-72. [PMID: 17274994 PMCID: PMC2692581 DOI: 10.1016/j.yhbeh.2006.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 12/03/2006] [Accepted: 12/04/2006] [Indexed: 11/28/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a family of toxicants that persist in measurable quantities in human and wildlife tissues, despite their ban in production in 1977. Some PCB mixtures can act as endocrine disrupting chemicals (EDCs) by mimicking or antagonizing the actions of hormones in the brain and periphery. When exposure to hormonally active substances such as PCBs occurs during vulnerable developmental periods, particularly prenatally or in early postnatal life, they can disrupt sex-specific patterning of the brain, inducing permanent changes that can later be manifested as improper sexual behaviors. Here, we investigated the effects of prenatal exposure to the PCB mixture Aroclor (A) 1221 on adult female reproductive behaviors in a dose-response model in the Sprague-Dawley rat. Using a paced mating paradigm that permits the female to set the timing of mating and control contact with the male during copulation, we were able to uncover significant differences in female-typical sexual activities in A1221-exposed females. Specifically, A1221 causes significant effects on mating trial pacing, vocalizations, ambulation and the female's likelihood to mate. The results further demonstrate that the intermediate treatment group has the greatest number of disrupted endpoints, suggestive of non-linear dose responses to A1221. These data demonstrate that the behavioral phenotype in adulthood is disrupted by low, ecologically relevant exposures to PCBs, and the results have implications for reproductive success and health in wildlife and women.
Collapse
Affiliation(s)
- Rebecca M Steinberg
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
23
|
Colciago A, Negri-Cesi P, Pravettoni A, Mornati O, Casati L, Celotti F. Prenatal Aroclor 1254 exposure and brain sexual differentiation: Effect on the expression of testosterone metabolizing enzymes and androgen receptors in the hypothalamus of male and female rats. Reprod Toxicol 2006; 22:738-45. [PMID: 16938428 DOI: 10.1016/j.reprotox.2006.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 06/08/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022]
Abstract
Polychlorinated biphenyls (PCBs) are industrial pollutants detected in human milk, serum and tissues. They readily cross the placenta to accumulate in fetal tissues, particularly the brain. These compounds affect normal brain sexual differentiation by mechanisms that are incompletely understood. The aim of this study was to verify whether a technical mixture of PCBs (Aroclor 1254) would interfere with the normal pattern of expression of hypothalamic aromatase and 5-alpha reductase(s), the two main enzymatic pathways involved in testosterone activation and of androgen receptor (AR). Aroclor 1254 was administered to pregnant rats at a daily dose of 25 mg/kg by gavage from days 15 to 19 of gestation (GD15-19). At GD20 the expression of aromatase, 5-alpha reductase types 1 and 2 and androgen receptor (AR) and aromatase activity were evaluated in the hypothalamus of male and female embryos. The direct effect of Aroclor was also evaluated on aromatase activity adding the PCB mixture to hypothalamic homogenates or to primary hypothalamic neuronal cultures. The data indicate that aromatase expression and activity is not altered by prenatal PCB treatment; 5-alpha reductase type 1 is similarly unaffected while 5-alpha reductase type 2 is markedly stimulated by the PCB exposure in females. Aroclor also decreases the expression of the AR in females. The observed in vivo effects are indicative of a possible adverse effect of PCBs on the important metabolic pathways by which testosterone produces its brain effects. In particular the changes of 5-alpha reductase type 2 and AR in females might be one of the mechanisms by which Aroclor exposure during fetal development affects adult sexual behavior in female rats.
Collapse
Affiliation(s)
- A Colciago
- Institute of Endocrinology, Via Balzaretti, Milano, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Kapoor N, Pant AB, Dhawan A, Dwievedi UN, Seth PK, Parmar D. Cytochrome P450 1A isoenzymes in brain cells: Expression and inducibility in cultured rat brain neuronal and glial cells. Life Sci 2006; 79:2387-94. [PMID: 16950407 DOI: 10.1016/j.lfs.2006.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 12/27/2022]
Abstract
Studies initiated to determine the expression of CYP1A1/1A2 isoenzymes in the primary cultures of rat brain neuronal and glial cells revealed significant activity of CYP1A-dependent 7-ethoxyresorufin-o-dealkylase (EROD) in microsomes prepared from both rat brain neuronal and glial cells. RT-PCR and immunocytochemical studies demonstrated constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes in cultured neuronal and glial cells. Cultured neurons exhibited relatively higher constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes, associated with higher activity of EROD than the glial cells. Induction studies with 3-methylchlorantherene (MC), a known CYP1A-inducer, resulted in significant concentration dependent increase in the activity of EROD in cultured rat brain cells with glial cells exhibiting a greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies, indicating relatively higher increase in CYP1A1 and 1A2 mRNA as well as protein expression in the cultured glial cells when compared to the neuronal cells. The greater magnitude of induction of CYP1A1 in glial cells is of significance, as these cells are components of the blood-brain barrier and it is suggested that they have a potential role in the toxication-detoxication mechanism. Our data indicating differences in the expression and sensitivity of CYP1A1 isoenzymes in cultured rat brain cells will not only help in identifying and distinguishing xenobiotic metabolizing capability of these cells but also in understanding the vulnerability of these specific cell types towards neurotoxicants.
Collapse
Affiliation(s)
- Nidhi Kapoor
- Biochemistry Department, Lucknow University, University Road, Lucknow, India
| | | | | | | | | | | |
Collapse
|
25
|
Blanchette M, Bataille AR, Chen X, Poitras C, Laganière J, Lefèbvre C, Deblois G, Giguère V, Ferretti V, Bergeron D, Coulombe B, Robert F. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res 2006; 16:656-68. [PMID: 16606704 PMCID: PMC1457048 DOI: 10.1101/gr.4866006] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The identification of regulatory regions is one of the most important and challenging problems toward the functional annotation of the human genome. In higher eukaryotes, transcription-factor (TF) binding sites are often organized in clusters called cis-regulatory modules (CRM). While the prediction of individual TF-binding sites is a notoriously difficult problem, CRM prediction has proven to be somewhat more reliable. Starting from a set of predicted binding sites for more than 200 TF families documented in Transfac, we describe an algorithm relying on the principle that CRMs generally contain several phylogenetically conserved binding sites for a few different TFs. The method allows the prediction of more than 118,000 CRMs within the human genome. A subset of these is shown to be bound in vivo by TFs using ChIP-chip. Their analysis reveals, among other things, that CRM density varies widely across the genome, with CRM-rich regions often being located near genes encoding transcription factors involved in development. Predicted CRMs show a surprising enrichment near the 3' end of genes and in regions far from genes. We document the tendency for certain TFs to bind modules located in specific regions with respect to their target genes and identify TFs likely to be involved in tissue-specific regulation. The set of predicted CRMs, which is made available as a public database called PReMod (http://genomequebec.mcgill.ca/PReMod), will help analyze regulatory mechanisms in specific biological systems.
Collapse
Affiliation(s)
- Mathieu Blanchette
- McGill Centre for Bioinformatics, Montreal, Quebec, Canada, H3A 2B4
- Corresponding authors.E-mail ; fax (514) 398-3387.E-mail ; fax (514) 987-5743
| | - Alain R. Bataille
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada H2W 1R7
| | - Xiaoyu Chen
- McGill Centre for Bioinformatics, Montreal, Quebec, Canada, H3A 2B4
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada H2W 1R7
| | - Josée Laganière
- Molecular Oncology Group Department of Medicine, Oncology and Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Céline Lefèbvre
- Molecular Oncology Group Department of Medicine, Oncology and Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Geneviève Deblois
- Molecular Oncology Group Department of Medicine, Oncology and Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Vincent Giguère
- Molecular Oncology Group Department of Medicine, Oncology and Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Vincent Ferretti
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 1A4
| | - Dominique Bergeron
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada H2W 1R7
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada H2W 1R7
| | - François Robert
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada H2W 1R7
- Corresponding authors.E-mail ; fax (514) 398-3387.E-mail ; fax (514) 987-5743
| |
Collapse
|