1
|
Oliveira-Filho EC, Grisolia CK. The Ecotoxicology of Microbial Insecticides and Their Toxins in Genetically Modified Crops: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16495. [PMID: 36554372 PMCID: PMC9778766 DOI: 10.3390/ijerph192416495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The use of microbial insecticides and their toxins in biological control and transgenic plants has increased their presence in the environment. Although they are natural products, the main concerns are related to the potential impacts on the environment and human health. Several assays have been performed worldwide to investigate the toxicity or adverse effects of these microbial products or their individual toxins. This overview examines the published data concerning the knowledge obtained about the ecotoxicity and environmental risks of these natural pesticides. The data presented show that many results are difficult to compare due to the diversity of measurement units used in the different research data. Even so, the products and toxins tested present low toxicity and low risk when compared to the concentrations used for pesticide purposes. Complementary studies should be carried out to assess possible effects on human health.
Collapse
Affiliation(s)
| | - Cesar K. Grisolia
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
2
|
Zhang X, Hou C, Liu S, Liu R, Yin X, Liu X, Ma H, Wen J, Zhou R, Yin N, Jian Y, Liu S, Wang J. Effects of transgenic Bacillus Thuringiensis maize (2A-7) on the growth and development in rats. Food Chem Toxicol 2021; 158:112694. [PMID: 34813927 DOI: 10.1016/j.fct.2021.112694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the effects of genetically modified insect-resistant maize (2A-7) on the growth and development in developing rats. Rats were fed a diet formulated with 2A-7 maize and were compared with rats fed a diet formulated with non-transgenic maize (CK group) and rats fed AIN-93G diet (BC group). 2A-7 maize was formulated into diets at ratios of 82.4% (H group) and 20.6% (L group); non-transgenic maize was formulated into diets at a ratio of 82.4%. From the first day of pregnancy, adult rats were divided into four groups and fed with the above four diets, respectively. Weaning on postnatal day 21, the diets of offspring were consistent with their parents. The results showed that body weight, hematology, serum biochemistry, organ weight, organ coefficients and allergenicity of offspring fed with 2A-7 maize were comparable with those in the CK and BC groups. In physiological and behavioral development experiments, there was no statistically significant difference among groups. Although mCry1Ab proteins were detected in organs and serum, no histopathological changes were observed among groups. In conclusion, A-7 maize cause no treatment-related adverse effects on offspring, indicating that 2A-7 maize is safe for developing rats.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Chao Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Siqi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Xueqian Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Huijuan Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Jing Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Ruoyu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Ning Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Yuanzhi Jian
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Shan Liu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, 100021, Beijing, China.
| | - Junbo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China; Beijing Key Laboratory of Food Safety Toxicology Research and Evaluation, 100191, Beijing, China.
| |
Collapse
|