1
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
2
|
Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, Li P, Sun C, Liu K. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145963. [PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
4
|
Shiraki A, Saito F, Akane H, Akahori Y, Imatanaka N, Itahashi M, Yoshida T, Shibutani M. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism. J Appl Toxicol 2015; 36:24-34. [DOI: 10.1002/jat.3140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Ayako Shiraki
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences; Gifu University; 1-1 Yanagido, Gifu-shi Gifu 501-1193 Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute; Japan, 1-4-25 Koraku, Bunkyo-ku Tokyo 112-0004 Japan
| | - Hirotoshi Akane
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute; Japan, 1-4-25 Koraku, Bunkyo-ku Tokyo 112-0004 Japan
| | - Nobuya Imatanaka
- Chemicals Evaluation and Research Institute; Japan, 1-4-25 Koraku, Bunkyo-ku Tokyo 112-0004 Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences; Gifu University; 1-1 Yanagido, Gifu-shi Gifu 501-1193 Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
| |
Collapse
|
5
|
Tanaka T, Wang L, Kimura M, Abe H, Mizukami S, Yoshida T, Shibutani M. Developmental Hypothyroidism Abolishes Bilateral Differences in Sonic Hedgehog Gene Control in the Rat Hippocampal Dentate Gyrus. Toxicol Sci 2014; 144:128-37. [DOI: 10.1093/toxsci/kfu266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Shiraki A, Saito F, Akane H, Takeyoshi M, Imatanaka N, Itahashi M, Yoshida T, Shibutani M. Expression alterations of genes on both neuronal and glial development in rats after developmental exposure to 6-propyl-2-thiouracil. Toxicol Lett 2014; 228:225-34. [PMID: 24780913 DOI: 10.1016/j.toxlet.2014.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022]
Abstract
The present study was performed to determine target gene profiles associated with pathological mechanisms of developmental neurotoxicity. For this purpose, we selected a rat developmental hypothyroidism model because thyroid hormones play an essential role in both neuronal and glial development. Region-specific global gene expression analysis was performed at postnatal day (PND) 21 on four brain regions representing different structures and functions, i.e., the cerebral cortex, corpus callosum, dentate gyrus and cerebellar vermis of rats exposed to 6-propyl-2-thiouracil in the drinking water at 3 and 10ppm from gestational day 6 to PND 21. Expression changes of gene clusters of neuron differentiation and development, cell migration, synaptic function, and axonogenesis were detected in all four regions. Characteristically, gene expression profiles suggestive of affection of ephrin signaling and glutamate transmission were obtained in multiple brain regions. Gene clusters suggestive of suppression of myelination and glial development were specifically detected in the corpus callosum and cerebral cortex. Immunohistochemically, immature astrocytes immunoreactive for vimentin and glial fibrillary acidic protein were increased, and oligodendrocytes immunoreactive for oligodendrocyte lineage transcription factor 2 were decreased in the corpus callosum. Immunoreactive intensity of myelin basic protein was also decreased in the corpus callosum and cerebral cortex. The hippocampal dentate gyrus showed downregulation of Ptgs2, which is related to synaptic activity and neurogenesis, as well as a decrease of cyclooxygenase-2-immunoreactive granule cells, suggesting an impaired synaptic function related to neurogenesis. These results suggest that multifocal brain region-specific microarray analysis can determine the affection of neuronal or glial development.
Collapse
Affiliation(s)
- Ayako Shiraki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Hirotoshi Akane
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Masahiro Takeyoshi
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Nobuya Imatanaka
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
7
|
Akane H, Saito F, Yamanaka H, Shiraki A, Imatanaka N, Akahori Y, Morita R, Mitsumori K, Shibutani M. Methacarn as a whole brain fixative for gene and protein expression analyses of specific brain regions in rats. J Toxicol Sci 2013; 38:431-43. [PMID: 23665942 DOI: 10.2131/jts.38.431] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
For molecular analysis in anatomically-specific brain regions for rodent studies, it is necessary to establish a fast and accurate procedure for tissue sampling to achieve high integrity and expression fidelity of extracted molecules. The present study was performed to examine suitability of whole brain fixation with methacarn and subsequent tissue sampling using punch-biopsy devices for gene expression analysis in rats. After fixation, each specific region, i.e., hippocampal dentate gyrus, corpus callosum, cingulate cortex or cerebellar vermis was collected, and the integrity and variability of expression data of extracted total RNAs and polypeptides were examined. Methacarn fixation, acetone fixation, and unfixed tissues were compared. Methacarn fixation resulted in high integrity of total RNAs sufficient for conducting global expression analysis and superior in terms of uniformity in the integrity among brain regions to that of acetone fixation. Extracted polypeptide after methacarn fixation revealed similar integrity to that without fixation or with acetone fixation. Methacarn fixation resulted in lower mRNA expression variability between samples than acetone fixation in microarray analysis. The fidelity of polypeptide expression was mostly equivalent between methacarn and acetone fixation in 2-dimensional differential in-gel electrophoresis, although the expression levels of a small number of polypeptides from acetone-fixed tissues were affected. These results suggest that whole brain fixation with methacarn retains advantages for global analyses of mRNAs and polypeptides in rodent studies.
Collapse
Affiliation(s)
- Hirotoshi Akane
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fujimoto H, Woo GH, Morita R, Itahashi M, Akane H, Nishikawa A, Shibutani M. Increased cellular distribution of vimentin and ret in the cingulum of rat offspring after developmental exposure to decabromodiphenyl ether or 1,2,5,6,9,10-hexabromocyclododecane. J Toxicol Pathol 2013; 26:119-29. [PMID: 23914054 PMCID: PMC3695334 DOI: 10.1293/tox.26.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/04/2013] [Indexed: 01/19/2023] Open
Abstract
Abstract: To determine effects of developmental exposure to brominated flame
retardants (BFRs), weak thyroid hormone disruptors, on white matter development, white
matter-specific global gene expression analysis was performed using microdissection
techniques and microarrays in male rats exposed maternally to decabromodiphenyl ether
(DBDE), one of the representative BFRs, at 10, 100 or 1000 ppm. Based on previous gene
expression profiles of developmental hypothyroidism and DBDE-exposed cases,
vimentin+ immature astrocytes and ret proto-oncogene (Ret)+
oligodendrocytes were immunohistochemically examined after developmental exposure to
representative BFRs, i.e., DBDE, 1,2,5,6,9,10-hexabromocyclododecane (HBCD; 100, 1000 or
10,000 ppm) and tetrabromobisphenol A (TBBPA; 100, 1000 or 10,000 ppm).
Vimentin+ and Ret+ cell populations increased at ≥ 100 ppm and ≥
10 ppm DBDE, respectively. Vimentin+ and Ret+ cells increased at ≥
1000 ppm HBCD, with no effect of TBBPA. The highest dose of DBDE and HBCD revealed subtle
fluctuations in serum thyroid-related hormone concentrations. Thus, DBDE and HBCD may
exert direct effects on glial cell development at ≥ middle doses. At high doses,
hypothyroidism may additionally be an inducing mechanism, although its contribution is
rather minor.
Collapse
Affiliation(s)
- Hitoshi Fujimoto
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Hahm JB, Privalsky ML. Research resource: identification of novel coregulators specific for thyroid hormone receptor-β2. Mol Endocrinol 2013; 27:840-59. [PMID: 23558175 DOI: 10.1210/me.2012-1117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are expressed as a series of interrelated isoforms that perform distinct biological roles. The TRβ2 isoform is found predominantly in the hypothalamus, pituitary, retina, and cochlea and displays unique transcriptional properties relative to the other TR isoforms. To more fully understand the isoform-specific biological and molecular properties of TRβ2, we have identified a series of previously unrecognized proteins that selectively interact with TRβ2 compared with the more widely expressed TRβ1. Several of these proteins preferentially enhance the transcriptional activity of TRβ2 when coexpressed in cells and are likely to represent novel, isoform-specific coactivators. Additional proteins were also identified in our screen that bind equally to TRβ1 and TRβ2 and may function as isoform-independent auxiliary proteins for these and/or other nuclear receptors. We propose that a combination of isoform-specific recruitment and tissue-specific expression of these newly identified coregulator candidates serves to customize TR function for different biological purposes in different cell types.
Collapse
Affiliation(s)
- Johnnie B Hahm
- Department of Microbiology, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|