1
|
Prenatal and pubertal exposure to 17α-ethinylestradiol disrupts folliculogenesis and promotes morphophysiological changes in ovaries of old gerbils ( Meriones unguiculatus). J Dev Orig Health Dis 2021; 13:49-60. [PMID: 33650479 DOI: 10.1017/s2040174421000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
17α-Ethinylestradiol is an endocrine-disrupting chemical that make up most contraceptive pills and can be found in the environment. Exposure to ethinylestradiol in different development periods may promote changes in morphophysiological parameters of reproductive and endocrine organs. Considering that the effects of low doses (15 µg/kg/day) of ethinylestradiol in ovaries from 12-month-old female gerbils (Meriones unguiculatus) were investigated. Four experimental groups used were control (without treatment), EE/PRE (treated from the 18th to the 22nd gestational day), EE/PUB (treated from the 42nd to the 49th day of life), and EE/PRE-PUB (treated in the both periods). The animals were euthanized at 12 months. Testosterone and 17β-estradiol levels were measured. The ovaries were stained with Hematoxylin and Eosin, Periodic Acid Schiff, and Gomori's Trichome. The follicles, corpus luteum, interstitial gland, lipofuscin, ovarian epithelium, and tunica albuginea were analyzed. Estradiol was higher in EE/PRE and EE/PUB groups, while testosterone was higher only in EE/PUB group. The main changes in follicle count occurred in EE/PUB and EE/PRE-PUB groups, with higher primordial follicle count and lower maturation of follicles. The corpus luteum was more evident in EE/PRE group. No differences were found in atretic follicles count. A higher area occupied by interstitial gland cells and lipofuscin deposit in these cells was noted in EE/PUB and EE/PRE-PUB groups. Higher epithelium height and thicker tunic albuginea were showed in treated groups. These results suggest that exposure to doses of EE2 in prenatal and pubertal periods of the development leads to morphological changes in senile ovaries.
Collapse
|
2
|
Zhang H, Taya K, Nagaoka K, Yoshida M, Watanabe G. 4-Nitrophenol (PNP) inhibits the expression of estrogen receptor β and disrupts steroidogenesis during the ovarian development in female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:1-9. [PMID: 28570923 DOI: 10.1016/j.envpol.2017.04.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/22/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
4-nitrophenol (PNP), isolated from diesel exhaust particles, has estrogenic and anti-androgenic activities, and affects the hypothalamus-pituitary-gonad axis in male rats. However, the effect of PNP on the reproduction of the female rats is still unknown. The aim of the study was to investigate the effect of neonatal PNP exposure on the ovarian function of female rats. The neonatal female rats were exposed to PNP (10 mg/kg, subcutaneously injection), the ovary and serum samples were collected at postnatal day (PND) 7, 14 and 21. The results showed that the ratio of primordial and primary follicles increased whereas the ratio of antral follicles decreased in the PNP treated ovaries at PND21. Even though no abnormality was observed in cyclicity, there was a significantly delayed timing of vaginal opening in PNP treated rats. The ovarian expression of steroidogenic enzymes including StAR, P450scc, P450c17 and P450arom increased at PND14 in the PNP treated rats compared with the control rats. In consistent with the gene expression, the concentration of estradiol-17β showed the similar pattern. However, PNP exposure failed to cause any significant change in the expression of steroidogenic enzymes in cultured neonatal ovaries. Furthermore, PNP suppressed the expression of estrogen receptor β (ERβ), but not estrogen receptor α (ERα), in cultured ovaries or developmental ovaries. These results suggested that PNP might directly affect the expression of ERβ in the rat ovaries, resulting in the disrupted steroidogenesis during ovarian development and the delayed puberty.
Collapse
Affiliation(s)
- Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China; United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan; Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuyoshi Taya
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan
| | - Kentaro Nagaoka
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan; Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Gen Watanabe
- United Graduate School of Veterinarian Science, Gifu University, Gifu 501-1193, Japan; Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
3
|
Zhang H, Taya K, Nagaoka K, Yoshida M, Watanabe G. Neonatal exposure to 17α-ethynyl estradiol (EE) disrupts follicle development and reproductive hormone profiles in female rats. Toxicol Lett 2017; 276:92-99. [DOI: 10.1016/j.toxlet.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/14/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
|
4
|
Jantzen CE, Toor F, Annunziato KA, Cooper KR. Effects of chronic perfluorooctanoic acid (PFOA) at low concentration on morphometrics, gene expression, and fecundity in zebrafish (Danio rerio). Reprod Toxicol 2017; 69:34-42. [PMID: 28143724 DOI: 10.1016/j.reprotox.2017.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 01/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent, toxic, anthropogenic chemical recalcitrant to biodegradation. Based on previous studies in lower and higher vertebrates, it was hypothesized that chronic, sub-lethal, embryonic exposure to PFOA in zebrafish (Danio rerio) would adversely impact fish development, survival, and fecundity. Zebrafish embryo/sac-fry were water exposed to 2.0 or 0nM PFOA from 3 to 120hpf, and juvenile to adult cohorts were fed spiked food (8 pM) until 6 months. After chronic exposure, PFOA exposed fish were significantly smaller in total weight and length. Gene expression analysis found a significant decrease of transporters slco2b1, slco4a1, slco3a1 and tgfb1a, and a significant increase of slco1d1 expression. PFOA exposed fish produced significantly fewer eggs with reduced viability and developmental stage delay in F1. Chronic, low-dose exposure of zebrafish to PFOA significantly altered normal development, survival and fecundity and would likely impact wild fish population fitness in watersheds chronically exposed to PFOA.
Collapse
Affiliation(s)
- Carrie E Jantzen
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA.
| | - Fatima Toor
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA
| | - Kate A Annunziato
- Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, New Brunswick, NJ, USA
| | - Keith R Cooper
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA; Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Shiga T, Nakamura TJ, Komine C, Goto Y, Mizoguchi Y, Yoshida M, Kondo Y, Kawaguchi M. A Single Neonatal Injection of Ethinyl Estradiol Impairs Passive Avoidance Learning and Reduces Expression of Estrogen Receptor α in the Hippocampus and Cortex of Adult Female Rats. PLoS One 2016; 11:e0146136. [PMID: 26741502 PMCID: PMC4712149 DOI: 10.1371/journal.pone.0146136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/14/2015] [Indexed: 12/27/2022] Open
Abstract
Although perinatal exposure of female rats to estrogenic compounds produces irreversible changes in brain function, it is still unclear how the amount and timing of exposure to those substances affect learning function, or if exposure alters estrogen receptor α (ERα) expression in the hippocampus and cortex. In adult female rats, we investigated the effects of neonatal exposure to a model estrogenic compound, ethinyl estradiol (EE), on passive avoidance learning and ERα expression. Female Wistar-Imamichi rats were subcutaneously injected with oil, 0.02 mg/kg EE, 2 mg/kg EE, or 20 mg/kg 17β-estradiol within 24 h after birth. All females were tested for passive avoidance learning at the age of 6 weeks. Neonatal 0.02 mg/kg EE administration significantly disrupted passive avoidance compared with oil treatment in gonadally intact females. In a second experiment, another set of experimental females, treated as described above, was ovariectomized under pentobarbital anesthesia at 10 weeks of age. At 15-17 weeks of age, half of each group received a subcutaneous injection of 5 μg estradiol benzoate a day before the passive avoidance learning test. Passive avoidance learning behavior was impaired by the 0.02 mg/kg EE dose, but notably only in the estradiol benzoate-injected group. At 17-19 weeks of age, hippocampal and cortical samples were collected from rats with or without the 5 μg estradiol benzoate injection, and western blots used to determine ERα expression. A significant decrease in ERα expression was observed in the hippocampus of the estradiol-injected, neonatal EE-treated females. The results demonstrated that exposure to EE immediately after birth decreased learning ability in adult female rats, and that this may be at least partly mediated by the decreased expression of ERα in the hippocampus.
Collapse
Affiliation(s)
- Tatsuomi Shiga
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takahiro J. Nakamura
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Chiaki Komine
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | | | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Yasuhiko Kondo
- School of Life and Environmental Sciences, Teikyo University of Science, Tokyo, Japan
| | - Maiko Kawaguchi
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Delayed adverse effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether on hypothalamic–pituitary–ovarian axis development and function in Wistar rats. Reprod Toxicol 2015; 57:165-75. [DOI: 10.1016/j.reprotox.2015.07.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/23/2023]
|
7
|
Ceccarelli I, Fiorenzani P, Della Seta D, Aloisi AM. Perinatal 17α-ethinylestradiol exposure affects formalin-induced responses in middle-aged male (but not female) rats. Horm Behav 2015; 73:116-24. [PMID: 26159286 DOI: 10.1016/j.yhbeh.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/16/2015] [Accepted: 07/01/2015] [Indexed: 11/27/2022]
Abstract
17α-Ethinylestradiol (EE), the main component of the contraceptive pill, is a synthetic estrogen found in rivers of the United States and Europe as an environmental contaminant. It is one of the most studied xenoestrogens due to its possible effect on the reproductive system. In the present study we evaluated the modulation of pain responses induced by formalin injection (licking, flexing, paw-jerk) in 8-month-old male and female offspring of female rats treated with two different doses of EE (4ng/kg/day or 400ng/kg/day) during pregnancy and lactation. Spontaneous behaviors and gonadal hormone levels were also determined. Both concentrations of EE induced an increase of pain behaviors in males only, i.e. higher flexing and licking of the formalin-injected paw than in OIL-exposed rats, during the second, inflammatory, phase of the formalin test. Grooming duration was increased by EE exposure in both males and females. Prenatal EE exposure (both concentrations) decreased estradiol plasma levels in the formalin-injected females but not in the males. These results underline the possibility that exposure to an environmental contaminant during the critical period of development can affect neural processes (such as those involved in pain modulation) during adulthood, indicating long-term changes in brain circuitry. However, such changes may be different in males and females.
Collapse
Affiliation(s)
- Ilaria Ceccarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Paolo Fiorenzani
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Daniele Della Seta
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy.
| |
Collapse
|
8
|
Yoshida M, Katashima S, Tahahashi M, Ichimura R, Inoue K, Taya K, Watanabe G. Predominant role of the hypothalamic-pituitary axis, not the ovary, in different types of abnormal cycle induction by postnatal exposure to high dose p-tert-octylphenol in rats. Reprod Toxicol 2015; 57:21-8. [PMID: 25975844 DOI: 10.1016/j.reprotox.2015.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 03/31/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
To determine whether it is the hypothalamic-pituitary axis or the ovary that plays the predominant role in abnormal estrous cycling induction by postnatal exposure to estrogenic compounds, female rats were subcutaneously injected with 100mg/kg p-tert-octylphenol or vehicle for 5 or 15 days after birth (OP-PND5, OP-PND15 or control). Ovaries were exchanged between control and treated groups on PND28. Controls receiving control or OP-PND5 ovaries showed normal cycles within 4 weeks after the exchange, and corpora lutea were detected in transplanted ovaries. Controls receiving OP-PND15 ovaries consistently increased persistent estrus (PE). OP-PND15 rats receiving control or OP-PND15 ovaries immediately descended into PE, and transplanted ovaries were atrophic with cystic follicles, indicating anovulation. OP-PND5 rats receiving control or OP-PND5 ovaries showed early onset of PE after normal cycling. The hypothalamic-pituitary axis is predominant in abnormal cycling induction by postnatal exposure to OP. OP-PND15 ovaries were impaired compared to other groups.
Collapse
Affiliation(s)
- Midori Yoshida
- Division of Pathology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Sayumi Katashima
- Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu-shi, 183-8509 Tokyo, Japan
| | - Miwa Tahahashi
- Division of Pathology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ryohei Ichimura
- Division of Pathology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu-shi, 183-8509 Tokyo, Japan
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kazuyoshi Taya
- Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu-shi, 183-8509 Tokyo, Japan
| | - Gen Watanabe
- Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu-shi, 183-8509 Tokyo, Japan
| |
Collapse
|
9
|
Prior attenuation of KiSS1/GPR54 signaling in the anteroventral periventricular nucleus is a trigger for the delayed effect induced by neonatal exposure to 17alpha-ethynylestradiol in female rats. Reprod Toxicol 2015; 51:145-56. [PMID: 25615539 DOI: 10.1016/j.reprotox.2015.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/25/2014] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
Neonatal exposure to 17alpha-ethynylestradiol (EE) causes delayed effect, a late-occurring irreversible damage to reproductive functions characterized by the early onset of age-matched abnormal estrous cycling. To clarify the involvement of a hypothalamic key cycling regulator KiSS1/GPR54 in the delayed effect, we investigated artificially induced LH surges and KiSS1 mRNA expression in the anteroventral periventricular nucleus (AVPV) of cycling young adult rats neonatally exposed to EE, and compared these parameters to those in about 5 months old middle-aged rats. KiSS1 mRNA expression, the number of KiSS1-positive cells and KiSS1/ERα co-expressing cells in the AVPV decreased in both EE-exposed and middle-aged rats. The peak area and levels of LH surge dose-dependently decreased in EE-exposed rats, and reduction was more evident in middle-aged rats. These results indicate that the prior attenuation of KiSS1 and consequent depression of LH surges plays a key role in the onset of abnormal estrous cycling in the delayed effect.
Collapse
|
10
|
Shirota M, Kawashima J, Nakamura T, Kamiie J, Shirota K, Yoshida M. Dose-dependent acceleration in the delayed effects of neonatal oral exposure to low-dose 17α-ethynylestradiol on reproductive functions in female Sprague-Dawley rats. J Toxicol Sci 2015; 40:727-38. [DOI: 10.2131/jts.40.727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mariko Shirota
- Laboratory of Comparative Toxicology, School of Veterinary Medicine
| | - Jun Kawashima
- Laboratory of Comparative Toxicology, School of Veterinary Medicine
| | | | | | - Kinji Shirota
- Laboratory of Veterinary Pathology, Azabu University
- Research Institute of Biosciences, Azabu University
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|
11
|
Usuda K, Nagaoka K, Nozawa K, Zhang H, Taya K, Yoshida M, Watanabe G. Neonatal exposure to 17α-ethinyl estradiol affects kisspeptin expression and LH-surge level in female rats. J Vet Med Sci 2014; 76:1105-10. [PMID: 24784441 PMCID: PMC4155190 DOI: 10.1292/jvms.14-0148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Contamination of estrogenic
compounds disrupts endocrinological and neurological reproductive systems in animals.
Neonatal exposure to 17α-ethinyl estradiol (EE) induced an abnormal estrous cycle at
postnatal day (PND) 180, but not at PND90. We found that serum level of luteinizing
hormone (LH) at the latter half of proestrus in EE-treated rats was lower than in the
controls at PND90 when there was no significant difference on estrous cyclicity.
Additionally, kiss1 mRNA levels in the anteroventral periventricular
nucleus-preoptic area (AVPV/POA) were lower in EE-treated rats than in the controls. The
expression of GnRH precursor (GNRH1) mRNA in the AVPV/POA and that of LH
beta subunit (LHb) mRNA in the pituitary were similar in the control- and
EE-treated groups. Our results indicated that neonatal exposure to EE leads to reduced
expression of kiss1 mRNA in AVPV/POA and LH-surge, which is likely
related to the delayed reproductive dysfunction seen in adult female rats.
Collapse
Affiliation(s)
- Kento Usuda
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|