1
|
Beyazal Çeliker F, Tümkaya L, Suzan ZT, Topcu A, Mercantepe T, Çinar S, Yazici ZA, Yılmaz A. Effects of gadodiamide and gadoteric acid on lung tissue: A comparative study. J Biochem Mol Toxicol 2022; 36:e23133. [PMID: 35686328 DOI: 10.1002/jbt.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
We set out to investigate the effects of gadodiamide and gadoteric acid, used for magnetic resonance imaging, on the lungs. In this study, 32 male Sprague Dawley rats were used. These were allocated into four groups; The first group (control) was untreated. The second group received isotonic saline on the first and fourth days of the week for 5 weeks. Following the same schedule, the third and fourth groups received a total of 2 mg/kg gadodiamide and gadoteric acid, respectively, in place of saline. The alveolar Wall thickness was evaluated. Gadodiamide and gadoteric acid significantly increased the numbers of collagen-3 and caspase-3 positive cells in the lung tissue (p < 0.05). In addition, these two substances increased the alveolar Wall thickness (p < 0.05). Furthermore, they increased the levels of malondialdehyde and glutathione (p < 0.05). This study demonstrates that both linear and macrocyclic contrast agents are toxic for the lungs in rats.
Collapse
Affiliation(s)
- Fatma Beyazal Çeliker
- Departments of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tümkaya
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zehra T Suzan
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Atilla Topcu
- Departments of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Seda Çinar
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zihni A Yazici
- Departments of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yılmaz
- Departments of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
2
|
Does Age Interfere With Gadolinium Toxicity and Presence in Brain and Bone Tissues?: A Comparative Gadoterate Versus Gadodiamide Study in Juvenile and Adult Rats. Invest Radiol 2019; 54:61-71. [PMID: 30394964 PMCID: PMC6310471 DOI: 10.1097/rli.0000000000000517] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The main objective of the study was to assess the effect of age on target tissue total gadolinium (Gd) retention after repeated administration of gadodiamide (linear) or gadoterate (macrocyclic) Gd-based contrast agent (GBCA) in rats. The secondary objective was to assess the potential developmental and long-term consequences of GBCA administration during neonatal and juvenile periods. MATERIALS AND METHODS A total of 20 equivalent human clinical doses (cumulated dose, 12 mmol Gd/kg) of either gadoterate or gadodiamide were administered concurrently by the intravenous route to healthy adult and juvenile rats. Saline was administered to juvenile rats forming the control group. In juvenile rats, the doses were administered from postnatal day 12, that is, once the blood-brain barrier is functional as in humans after birth. The tests were conducted on 5 juvenile rats per sex and per group and on 3 adult animals per sex and per group. T1-weighted magnetic resonance imaging of the cerebellum was performed at 4.7 T during both the treatment and treatment-free periods. Behavioral tests were performed in juvenile rats. Rats were euthanatized at 11 to 12 weeks (ie, approximately 3 months) after the last administration. Total Gd concentrations were measured in plasma, skin, bone, and brain by inductively coupled plasma mass spectrometry. Cerebellum samples from the juvenile rats were characterized by histopathological examination (including immunohistochemistry for glial fibrillary acidic protein or GFAP, and CD68). Lipofuscin pigments were also studied by fluorescence microscopy. All tests were performed blindly on randomized animals. RESULTS Transient skin lesions were observed in juvenile rats (5/5 females and 2/4 males) and not in adult rats having received gadodiamide. Persisting (up to completion of the study) T1 hyperintensity in the deep cerebellar nuclei (DCNs) was observed only in gadodiamide-treated rats. Quantitatively, a slightly higher progressive increase in the DCN/brain stem ratio was observed in adult rats compared with juvenile rats, whereas no difference was noted visually. In all tissues, total Gd concentrations were higher (10- to 30-fold higher) in the gadodiamide-treated groups than in the gadoterate groups. No age-related differences were observed except in bone marrow where total Gd concentrations in gadodiamide-treated juvenile rats were higher than those measured in adults and similar to those measured in cortical bone tissue. No significant treatment-related effects were observed in histopathological findings or in development, behavior, and biochemistry parameters. However, in the elevated plus maze test, a trend toward an anxiogenic effect was observed in the gadodiamide group compared with other groups (nonsignificant). Moreover, in the balance beam test, a high number of trials were excluded in the gadodiamide group because rats (mainly males) did not completely cross the beam, which may also reflect an anxiogenic effect. CONCLUSIONS No T1 hyperintensity was observed in the DCN after administration of the macrocyclic GBCA gadoterate regardless of age as opposed to administration of the linear GBCA gadodiamide. Repeated administration of gadodiamide in neonatal and juvenile rats resulted in similar total Gd retention in the skin, brain, and bone to that in adult rats with sex having no effect, whereas Gd distribution in bone marrow was influenced by age. Further studies are required to assess the form of the retained Gd and to investigate the potential risks associated with Gd retention in bone marrow in juvenile animals treated with gadodiamide. Regardless of age, total Gd concentration in the brain and bone was 10- to 30-fold higher after administration of gadodiamide compared with gadoterate.
Collapse
|
3
|
Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA's Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents. Invest Radiol 2018; 52:317-323. [PMID: 28368880 DOI: 10.1097/rli.0000000000000374] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis. The result of actions taken by the European Medicines Agency and the US Food and Drug Administration, stratifying the agents by risk and contraindicating specific agents in severe renal dysfunction, has led to no new cases being identified in North America or Europe. Subsequently, in 2014, long-term deposition in the brain of gadolinium was first shown, after administration of 2 nonionic linear chelates, gadodiamide, and gadopentetate dimeglumine. This has led to an intense focus on the question of in vivo distribution, possible dechelation, and subsequent deposition of gadolinium, together with substantial clarification of the phenomenon as well as stratification of the agents on this basis. This review focuses on 8 critical questions regarding gadolinium deposition in the brain and body, with the answers and discussion therein important for future regulatory decisions and clinical practice. It is now clear that dechelation of gadolinium occurs in vivo with the linear agents and is responsible for this phenomenon, with key experts in the field recommending, except where there is no suitable alternative, a shift in clinical practice from the linear to macrocyclic agents. In addition, on March 10, 2017, the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency recommended suspension of the marketing authorization for 4 linear gadolinium contrast agents-specifically Omniscan, Optimark, Magnevist, and MultiHance (gadodiamide, gadoversetamide, gadopentetate dimeglumine, and gadobenate dimeglumine)-for intravenous injection. Cited in the report was convincing evidence of gadolinium deposition in the brain months after injection of these linear agents. Primovist/Eovist (gadoxetic acid disodium) will remain available, being used at a lower dose for liver imaging, because it meets an important diagnostic need. In addition, a formulation of Magnevist for intra-articular injection will remain available because of its very low gadolinium concentration.
Collapse
|
4
|
Bussi S, Penard L, Bonafè R, Botteron C, Celeste R, Coppo A, Queliti R, Kirchin MA, Tedoldi F, Maisano F. Non-clinical assessment of safety and gadolinium deposition after cumulative administration of gadobenate dimeglumine (MultiHance ®) to neonatal and juvenile rats. Regul Toxicol Pharmacol 2017; 92:268-277. [PMID: 29278694 DOI: 10.1016/j.yrtph.2017.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
To determine the impact of single and cumulative doses of MultiHance on toxicity, pharmacokinetics, tissue gadolinium presence, behavior and neurological function in juvenile rats. Juvenile male and female rats received either physiological saline or MultiHance at 0.6, 1.25 or 2.5 mmol/kg bodyweight. Animals received either single or six consecutive MultiHance administrations and were sacrificed the day after the last administration or after a 60-day treatment-free period. Animals were assessed for behavior, cognitive function, grip strength, gait, pupillary reflex, and auditory reflex, as well as for physical development, sexual maturation and histopathology. Gadolinium presence in brain, femur, kidneys, liver and skin was determined using inductively coupled plasma-mass spectrometry (ICP-MS). No effects of MultiHance on behavior, cognitive function or any other parameter were noted, even for the highest administered cumulative dose (15 mmol/kg). Gadolinium presence was variable across tissues and decreased during the 60-day treatment-free period. The highest levels were noted in the femur and the lowest levels in the brain. Gadolinium presence in juvenile rat brain following single or repeated MultiHance administrations was minimal and non-impactful.
Collapse
Affiliation(s)
- Simona Bussi
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Laure Penard
- Charles River, 329 Impasse du Domaine Rozier, 69210 Saint Germain-Nuelles, Lyon, France.
| | - Roberta Bonafè
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Catherine Botteron
- Bracco Suisse SA, Route de la Galaise 31, 1228 Plan-les-Ouates, Genève, Switzerland.
| | - Roberto Celeste
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Alessandra Coppo
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Roberta Queliti
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Miles A Kirchin
- Bracco Imaging Spa, Via Caduti di Marcinelle 13, 20134 Milano, Italy.
| | - Fabio Tedoldi
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Federico Maisano
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| |
Collapse
|
5
|
Wan C, Zhan Y, Xue R, Wu Y, Li X, Pei F. Gd-DTPA-induced dynamic metabonomic changes in rat biofluids. Magn Reson Imaging 2017; 44:15-25. [PMID: 28095303 DOI: 10.1016/j.mri.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purposes of this study were (1) to detect the dynamic metabonomic changes induced by gadopentetate dimeglumine (Gd-DTPA) and (2) to investigate the potential metabolic disturbances associated with the pathogenesis of nephrogenic systemic fibrosis (NSF) at the early stage. METHODS A nuclear magnetic resonance (NMR)-based metabolomics approach was used to investigate the urinary and serum metabolic changes induced by a single tail vein injection of Gd-DTPA (dosed at 2 and 5mmol/kg body weight) in rats. Urine and serum samples were collected on days 1, 2 and 7 after dosing. RESULTS Metabolic responses of rats to Gd-DTPA administration were systematic involving changes in lipid metabolism, glucose metabolism, TCA cycle, amino acid metabolism and gut microbiota functions. Urinary and serum metabonomic recovery could be observed in both the 2 and 5mmol/kg body weight group, but the metabolic effects of high-dosed (5mmol/kg body weight) Gd-DTPA lasted longer. It is worth noting that hyperlipidemia was observed after Gd-DTPA injection, and nicotinate might play a role in the subsequent self-recovery of lipid metabolism. The disturbance of tyrosine, glutamate and gut microbiota metabolism might associate with the progression of NSF. CONCLUSION These findings offered essential information about the metabolic changes induced by Gd-DTPA, and could be potentially important for investigating the pathogenesis of NSF at the early stage. Moreover, the recovery of rats administrated with Gd-DTPA may have implications in the treatment of early stage NSF.
Collapse
Affiliation(s)
- Chuanling Wan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road 19, Beijing 100049, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road 19, Beijing 100049, China
| | - Rong Xue
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| | - Yijie Wu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China.
| | - Fengkui Pei
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| |
Collapse
|
6
|
Giorgi H, Ammerman J, Briffaux JP, Fretellier N, Corot C, Bourrinet P. Non-clinical safety assessment of gadoterate meglumine (Dotarem®) in neonatal and juvenile rats. Regul Toxicol Pharmacol 2015; 73:960-70. [DOI: 10.1016/j.yrtph.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/27/2022]
|