1
|
Neal RE, Chen J, Webb C, Stocke K, Gambrell C, Greene RM, Pisano MM. Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring. Reprod Toxicol 2016; 65:414-424. [PMID: 27319396 DOI: 10.1016/j.reprotox.2016.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 01/22/2023]
Abstract
Utilizing a mouse model of 'active' developmental cigarette smoke exposure (CSE) [gestational day (GD) 1 through postnatal day (PD) 21] characterized by offspring low birth weight, the impact of developmental CSE on liver proteome profiles of adult offspring at 6 months of age was determined. Liver tissue was collected from Sham- and CSE-offspring for 2D-SDS-PAGE based proteome analysis with Partial Least Squares-Discriminant Analysis (PLS-DA). A similar study conducted at the cessation of exposure to cigarette smoke documented decreased gluconeogenesis coupled to oxidative stress in weanling offspring. In the current study, exposure throughout development to cigarette smoke resulted in impaired hepatic carbohydrate metabolism, decreased serum glucose levels, and increased gluconeogenic regulatory enzyme abundances during the fed-state coupled to decreased expression of SIRT1 as well as increased PEPCK and PGC1α expression. Together these findings indicate inappropriately timed gluconeogenesis that may reflect impaired insulin signaling in mature offspring exposed to 'active' developmental CSE.
Collapse
Affiliation(s)
- Rachel E Neal
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States.
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Cindy Webb
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States
| | - Kendall Stocke
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Caitlin Gambrell
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Robert M Greene
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States
| | - M Michele Pisano
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
2
|
Neal RE, Jagadapillai R, Chen J, Webb CL, Stocke K, Gambrell C, Greene RM, Pisano MM. Developmental cigarette smoke exposure II: Kidney proteome profile alterations in 6 month old adult offspring. Reprod Toxicol 2016; 65:425-435. [PMID: 27208485 DOI: 10.1016/j.reprotox.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 04/29/2016] [Accepted: 05/13/2016] [Indexed: 11/24/2022]
Abstract
Cigarette smoke exposure (CSE) during gestation and early development suppresses the growth trajectory in offspring. In prior studies utilizing a mouse model of 'active' developmental CSE (GD1-PD21), low birth weight induced by CSE persisted throughout the neonatal period and was present at the cessation of exposure at weaning with proportionally smaller kidney mass that was accompanied by impairment of carbohydrate metabolism. In the present study, littermates of those characterized in the prior study were maintained until 6 months of age at which time the impact of developmental CSE on the abundance of proteins associated with cellular metabolism in the kidney was examined. Kidney protein abundances were examined by 2D-SDS-PAGE based proteome profiling with statistical analysis by Partial Least Squares-Discriminant Analysis. Key findings of this study include a persistence of impact of developmental CSE past the original exposure period on the nucleic acid and carbohydrate metabolism networks and oxidant scavenging pathways.
Collapse
Affiliation(s)
- Rachel E Neal
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States.
| | - Rekha Jagadapillai
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Cynthia L Webb
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States
| | - Kendall Stocke
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Cailtin Gambrell
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, United States
| | - Robert M Greene
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States
| | - M Michele Pisano
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, United States; Birth Defects Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
3
|
Neal RE, Jagadapillai R, Chen J, Webb C, Stocke K, Greene RM, Pisano MM. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring. Reprod Toxicol 2016; 65:436-447. [PMID: 27208486 DOI: 10.1016/j.reprotox.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Abstract
Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory.
Collapse
Affiliation(s)
- Rachel E Neal
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA.
| | - Rekha Jagadapillai
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Cindy Webb
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA
| | - Kendall Stocke
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Robert M Greene
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| | - M Michele Pisano
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|