1
|
Ješeta M, Navrátilová J, Franzová K, Fialková S, Kempisty B, Ventruba P, Žáková J, Crha I. Overview of the Mechanisms of Action of Selected Bisphenols and Perfluoroalkyl Chemicals on the Male Reproductive Axes. Front Genet 2021; 12:692897. [PMID: 34646297 PMCID: PMC8502804 DOI: 10.3389/fgene.2021.692897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men’s fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
Collapse
Affiliation(s)
- Michal Ješeta
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Veterinary Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Navrátilová
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kateřina Franzová
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Sandra Fialková
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Bartozs Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.,Department of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland.,Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Pavel Ventruba
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Jana Žáková
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Igor Crha
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Robles-Matos N, Artis T, Simmons RA, Bartolomei MS. Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism. Genes (Basel) 2021; 12:1153. [PMID: 34440327 PMCID: PMC8393470 DOI: 10.3390/genes12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism that results in monoallelic, parent-of-origin-specific expression of a small number of genes. Imprinted genes play a crucial role in mammalian development as their dysregulation result in an increased risk of human diseases. DNA methylation, which undergoes dynamic changes early in development, is one of the epigenetic marks regulating imprinted gene expression patterns during early development. Thus, environmental insults, including endocrine disrupting chemicals during critical periods of fetal development, can alter DNA methylation patterns, leading to inappropriate developmental gene expression and disease risk. Here, we summarize the current literature on the impacts of in utero exposure to endocrine disrupting chemicals on genomic imprinting and metabolism in humans and rodents. We evaluate how early-life environmental exposures are a potential risk factor for adult metabolic diseases. We also introduce our mouse model of phthalate exposure. Finally, we describe the potential of genomic imprinting to serve as an environmental sensor during early development and as a novel biomarker for postnatal health outcomes.
Collapse
Affiliation(s)
- Nicole Robles-Matos
- Epigenetics Institute, Center of Excellence in Environmental Toxicology, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 9-122 Smilow Center for Translational Research, Philadelphia, PA 19104, USA;
| | - Tre Artis
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Rebecca A. Simmons
- Center of Excellence in Environmental Toxicology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 1308 Biomedical Research Building II/III, Philadelphia, PA 19104, USA;
| | - Marisa S. Bartolomei
- Epigenetics Institute, Center of Excellence in Environmental Toxicology, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 9-122 Smilow Center for Translational Research, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Pal A, Oakes J, Elnagheeb M, Ideraabdullah FY. Maternal Microdeletion at the H19/Igf2 ICR in Mice Increases Offspring Susceptibility to In Utero Environmental Perturbation. Epigenet Insights 2020; 13:2516865720970575. [PMID: 33313480 PMCID: PMC7716063 DOI: 10.1177/2516865720970575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022] Open
Abstract
Deficiency of methyl donor nutrients folate, choline, and methionine (methyl deficiency) during gestation can impair fetal development and perturb DNA methylation. Here, we assessed genetic susceptibility to methyl deficiency by comparing effects in wildtype C57BL/6J (B6) mice to mutant mice carrying a 1.3 kb deletion at the H19/Igf2 Imprinting Control Region (ICR) (H19 ICRΔ2,3). The H19 ICRΔ2,3 mutation mimics microdeletions observed in Beckwith-Wiedemann syndrome (BWS) patients, who exhibit epimutations in cis that cause loss of imprinting and fetal overgrowth. Dams were treated during pregnancy with 1 of 4 methyl sufficient (MS) or methyl deficient (MD) diets, with or without the antibiotic commonly used to deplete folate producing gut microbes. As expected, after ~9 weeks of treatment, dams in MD and MD + antibiotic groups exhibited substantially reduced plasma folate concentrations. H19 ICRΔ2,3 mutant lines were more susceptible to adverse pregnancy outcomes caused by methyl deficiency (reduced birth rate and increased pup lethality) and antibiotic (decreased litter size and litter survival). Surprisingly, pup growth/development was only minimally affected by methyl deficiency, while antibiotic treatment caused inverse effects on B6 and H19 ICRΔ2,3 lines. B6 pups treated with antibiotic exhibited increased neonatal and weanling bodyweight, while both wildtype and mutant pups of heterozygous H19 ICRΔ2,3/+ dams exhibited decreased neonatal bodyweight that persisted into adulthood. Interestingly, only antibiotic-treated pups carrying the H19 ICRΔ2,3 mutation exhibited altered DNA methylation at the H19/Igf2 ICR, suggesting ICR epimutation was not sufficient to explain the altered phenotypes. These findings demonstrate that genetic mutation of the H19/Igf2 ICR increases offspring susceptibility to developmental perturbation in the methyl deficiency model, maternal and pup genotype play an essential role, and antibiotic treatment in the model also plays a key independent role.
Collapse
Affiliation(s)
- Anandita Pal
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judy Oakes
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Marwa Elnagheeb
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Folami Y Ideraabdullah
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
5
|
Golshan M, Alavi SMH. Androgen signaling in male fishes: Examples of anti-androgenic chemicals that cause reproductive disorders. Theriogenology 2019; 139:58-71. [PMID: 31369937 DOI: 10.1016/j.theriogenology.2019.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
Similar to other vertebrates, androgens regulate spermatogenesis in fishes. In teleosts, the main androgen is 11-Ketotestosterone (11-KT), which is oxidized testosterone (T) at the C11 position. Compared to T, 11-KT is a nonaromatizable steroid, and does not convert to 17β-estradiol. However, circulatory levels of both T and 11-KT undergo seasonal variations along with testicular development. Physiological functions of androgens are mediated via androgen receptor (Ar). So far, nuclear Ar and membrane Ar have been identified in fishes. In the present study, we reviewed androgen biosynthesis in fishes, compared molecular structure of nuclear Ar in models of mammals and fishes, and investigated the mechanisms of action of environmental contaminants that differentially disrupt androgen signaling in fish reproduction. In the latter case, the adverse effects of vinclozolin (VZ) and bis(2-ethylhexyl) phthalate (DEHP) are compared. Both VZ and DEHP are capable of decreasing sperm quality in males. Vinclozolin causes an increase in 11-KT production associated with increases in kisspeptin (kiss-1) and salmon gonadotropin-releasing hormone (gnrh3) mRNA levels as well as circulatory levels of luteinizing hormone (Lh). In contrast, DEHP inhibits 11-KT production associated with a decrease in circulatory Lh levels. However, DEHP-inhibited 11-KT production is not associated with changes in kiss-1 and gnrh3 mRNA levels. Studies also show that VZ alters ar mRNA levels, while DEHP is without effect. These suggest that VZ and DEHP act differentially to cause androgen-dependent reproductive disorder in male fishes. Molecular analyses of the nuclear AR show that both DNA and ligand binding domains (DBD and LBD, respectively) are highly conserved within models of mammals and fishes. A phylogeny tree of the AR shows distinct clusters between mammals and fishes. In fishes, subtypes of Arα and Arβ are also separated in distinct clusters. Thus, further studies need to generate ar knockout fish model to better elucidate androgen regulation of reproduction in fishes via Ar.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, P. O. Box: 133-15745, Tehran, Iran
| | | |
Collapse
|