1
|
Kinkade CW, Brinker A, Buckley B, Waysack O, Fernandez ID, Kautz A, Meng Y, Shi H, Brunner J, Ohman-Strickland P, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES, Rivera-Núñez Z. Sociodemographic and dietary predictors of maternal and placental mycoestrogen concentrations in a US pregnancy cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00722-6. [PMID: 39363096 DOI: 10.1038/s41370-024-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Zearalenone (ZEN) is a mycotoxin contaminating grains and processed foods. ZEN alters nuclear estrogen receptor α/β signaling earning its designation as a mycoestrogen. Experimental evidence demonstrates that mycoestrogen exposure during pregnancy is associated with altered maternal sex steroid hormones, changes in placental size, and decreases in fetal weight and length. While mycoestrogens have been detected in human biospecimens worldwide, exposure assessment of ZEN in US populations, particularly during pregnancy, is lacking. OBJECTIVE To characterize urinary and placental concentrations of ZEN and its metabolites in healthy US pregnant people and examine demographic, perinatal, and dietary predictors of exposure. METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE study and placenta samples were collected at delivery (Rochester, NY, n = 317). We used high performance liquid chromatography and high-resolution tandem mass spectrometry to measure total urinary (ng/ml) and placental mycoestrogens (ng/g). Using linear regression and linear mixed effect models, we examined associations between mycoestrogen concentrations and demographic, perinatal, and dietary factors (Healthy Eating Index [HEI], ultra-processed food [UPF] consumption). RESULTS Mycoestrogens were detected in 97% of urines (median 0.323 ng/ml) and 84% of placentas (median 0.012 ng/g). Stability of urinary mycoestrogens across pregnancy was low (ICC: 0.16-0.22) and did not correlate with placental levels. In adjusted models, parity (multiparous) and pre-pregnancy BMI (higher) predicted higher urinary concentrations. Birth season (fall) corresponded with higher placental mycoestrogens. Dietary analyses indicated that higher HEI (healthier diets) predicted lower exposure (e.g., Σmycoestrogens %∆ -2.03; 95%CI -3.23, -0.81) and higher percent calories from UPF predicted higher exposure (e.g., Σmycoestrogens %∆ 1.26; 95%CI 0.29, 2.24). IMPACT The mycotoxin, zearalenone (ZEN), has been linked to adverse health and reproductive impacts in animal models and livestock. Despite evidence of widespread human exposure, relatively little is known about predictors of exposure. In a pregnant population, we observed that maternal ZEN concentrations varied by maternal pre-pregnancy BMI and parity. Consumption of ultra-processed foods, added sugars, and refined grains were linked to higher ZEN concentrations while healthier diets were associated with lower levels. Our research suggests disparities in exposure that are likely due to diet. Further research is needed to understand the impacts of ZEN on maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - I Diana Fernandez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Huishan Shi
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
2
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
3
|
Marhaba M, Nagendla NK, Anjum S, Ganneru S, Singh V, Pal S, Mudiam MKR, Ansari KM. Liquid chromatography-high-resolution mass spectrometry-based metabolomics revealing the effects of zearalenone and alpha-zearalenol on human endometrial cancer cells. Toxicol Res (Camb) 2024; 13:tfae169. [PMID: 39417035 PMCID: PMC11474235 DOI: 10.1093/toxres/tfae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Human exposure to mycotoxins through food involve a mixture of compounds, which can be harmful to human health. The Fusarium fungal species are known to produce zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, and its metabolite alpha-zearalenol (α-ZEL), both of which possess endocrine-disruptive properties. Given their potential harm to human health through food exposure, investigating the combined effects of ZEN and α-ZEL becomes crucial. Hence, the combined impact of ZEN and α-ZEL study hold significant importance. This in vitro study delves into the critical area, examining their combined impact on the proliferation and metabolic profile of endometrial cancer Ishikawa cells via sulforhodamine, clonogenic, proliferating cell nuclear antigen (PCNA) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) based untargeted metabolomics. Low concentrations of ZEN (25 nm), α-ZEL (10 nm), or a combination of both were observed to significantly enhance cell proliferation of Ishikawa cells, as evidenced by PCNA immunostaining, immunoblotting as well and clonogenic assays. The metabolomics revealed the perturbations in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and phenylalanine, tyrosine, tryptophan biosynthesis provides valuable insights into potential mechanism by which these mycotoxins may facilitate cell proliferation. However, further investigations are warranted to comprehensively understand the implications of these findings and their possible implications for human health.
Collapse
Affiliation(s)
- Marhaba Marhaba
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Narendra Kumar Nagendla
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Saria Anjum
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Sireesha Ganneru
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Varsha Singh
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Saurabh Pal
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
- Advanced Research Methodologies, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
4
|
Lazofsky A, Brinker A, Gupta R, Barrett E, Aleksunes LM, Rivera-Núñez Z, Buckley B. Optimized extraction and analysis methods using liquid chromatography-tandem mass spectrometry for zearalenone and metabolites in human placental tissue. Heliyon 2023; 9:e16940. [PMID: 37484340 PMCID: PMC10361036 DOI: 10.1016/j.heliyon.2023.e16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Zearalenone and its metabolites, a group of endocrine disrupting mycotoxins, have been linked to adverse reproductive health effects. They cross the placental barrier, potentially reaching the fetus. In this study, we adapted and optimized our protocol previously used for urine, to measure these mycotoxins in human placentas. We combined a supported liquid extraction step using Chem Elut cartridges with solid phase extraction on Discovery® DSC-NH2 tubes. The optimized extraction efficiencies were between 68 and 80% for all metabolites. Analysis was performed by UHPLC-HRMS using a Betasil™ Phenyl-Hexyl column eluted with a gradient of acetonitrile-methanol-water. The chromatography method separated all analytes in under 15 min. Validation experiments confirmed the method's sensitivity, with LODs ranging from 0.0055 to 0.011 pg/mg tissue. The method was linear over a range of 0.0025-1.5 pg/mg tissue with R2 values ≥ 0.994. Precision and accuracy calculations ranged from 4.7-7.9% and 0.6-6.7% respectively. The method was then successfully applied to a subset of placenta samples (n = 25) collected from an ongoing prospective birth cohort. Interestingly, 92% of the samples contained at least one measurable zearalenone metabolite, providing initial indication of potentially widespread exposure during pregnancy.
Collapse
Affiliation(s)
- Abigail Lazofsky
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ruby Gupta
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Emily Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, 160 Frelinghuysen Road, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
5
|
Bondarczuk NH, Schmidt NP, Breyer GM, de Moura AC, Molz P, Barshack AG, da Motta ADS, Guedes RP, Giovenardi M. A high-fat diet changes placental morphology but does not change biochemical parameters, placental oxidative stress or cytokine levels. Placenta 2023; 135:25-32. [PMID: 36913806 DOI: 10.1016/j.placenta.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION The placenta is an organ that forms the bridge between mother and fetus during pregnancy. Changes in the intrauterine environment directly impact the fetus' health, with maternal nutrition determining its development. This study analyzed the effects of different diets and probiotic supplementation during pregnancy on the biochemical parameters of maternal serum and placental morphology, oxidative stress, and cytokine levels in mice. METHODS Female mice were fed standard (CONT), restrictive (RD), or high-fat (HFD) diets before and during pregnancy. During pregnancy, the CONT and HFD groups were divided into two groups that received the Lactobacillus rhamnosus LB1.5 three times per week (CONT + PROB and HFD + PROB). The RD, CONT, or HFD groups received vehicle control. Maternal serum biochemical parameters (glucose, cholesterol, and triglycerides) were evaluated. The morphology, redox profile (thiobarbituric acid reactive substances, sulfhydryls, catalase, and superoxide dismutase enzyme activity), and inflammatory cytokines (interleukins 1α, 1β, IL-6, and tumor necrosis factor-alpha) were evaluated in the placenta. RESULTS The serum biochemical parameters presented no differences between the groups. Regarding placental morphology, the HFD group showed an increased thickness of the labyrinth zone compared to the CONT + PROB group. However, no significant difference was found in the analysis of the placental redox profile and cytokine levels. DISCUSSION RD and HFD, for 16 weeks before and during pregnancy, as well as probiotic supplementation during pregnancy, caused no change in serum biochemical parameters nor the gestational viability rate, placental redox state, and cytokine levels. However, HFD increased the thickness of the placental labyrinth zone.
Collapse
Affiliation(s)
- Nicole Hiller Bondarczuk
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Natália Perin Schmidt
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Gabriela Merker Breyer
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Patrícia Molz
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Alethea Gatto Barshack
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Amanda de Souza da Motta
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Yan J, Kong L, Zhang X, Yu M, Zhu K, Zhao A, Shi D, Sun Y, Wang J, Shen W, Li L. Maternal Zearalenone Exposure Affects Gut Microbiota and Follicular Development in Suckled Offspring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15570-15582. [PMID: 36514903 DOI: 10.1021/acs.jafc.2c06457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that is widely present in feed and agricultural products. Studies have demonstrated that ZEN, as a type of estrogen analogue, can significantly affect the female reproductive system. Breast milk is the best nutrient for infant growth and development, but it is still unknown whether ZEN influences the fertility of offspring through suckling. In this study, we collected fecal and ovarian tissue from neonatal female offspring, whose mothers were exposed to ZEN for 21 days, and explored the effects of maternal ZEN exposure on intestinal microecology and follicular development in the mouse using 16S rRNA amplicon sequencing technology. Our findings suggested that maternal ZEN exposure significantly diminished ovarian reserve, increased apoptosis of ovarian granulosa cell (GC), and impacted the developmental competence of oocytes in lactating offspring. In addition, the results of 16S rRNA sequencing showed that the abundance of gut microbiota in offspring was significantly changed, including Bacteroidetes, Proteobacteria, and Firmicutes. This leads to alterations of glutathione metabolism and the expression of antioxidant enzymes in ovaries. In summary, our findings supported a potential relationship between gut microbiota and abnormal ovarian development caused by ZEN, which offers novel insights for therapeutic strategies for reproductive disorders induced by ZEN exposure.
Collapse
Affiliation(s)
- Jiamao Yan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Kong
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kexin Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Aihong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Dachuan Shi
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Yonghong Sun
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Bai J, Li J, Liu N, Jia H, Si X, Zhou Y, Zhai Z, Yang Y, Ren F, Wu Z. Zearalenone induces apoptosis and autophagy by regulating endoplasmic reticulum stress signalling in porcine trophectoderm cells. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:186-199. [PMID: 36712409 PMCID: PMC9851881 DOI: 10.1016/j.aninu.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Zearalenone (ZEA), a mycotoxin produced mainly by fungi belonging to Fusarium species in foods and feeds, causes a serious hazard to humans and animals. Numerous studies have revealed that ingesting ZEA can disrupt the reproductive function and impair the reproductive process in animals. This experiment was to investigate the toxicological effect and the mechanism of ZEA exposure on reproduction in pigs during early stages of pregnancy. In the present study, we treated with 0 to 80 μmol/L ZEA for 12 or 24 h in trophoblast ectoderm (pTr) cells. The results showed that ZEA had significantly decreased cell proliferation (P < 0.05), which was accompanied by DNA damage-related cell cycle arrest at G2/M phase, activation of the apoptosis and endoplasmic reticulum (ER) stress, as well as impairment of barrier function (P < 0.05). Western blot analysis and transmission electron microscopy (TEM) showed that exposure to ZEA can activation of autophagy in pTr cells. Importantly, pretreatment with chloroquine (CQ) or 3-methyladenine (3-MA) led to increased apoptosis in pTr cells. Interestingly, pTr cells pretreated with 4-phenylbutyric acid (4-PBA), an inhibitor of ER stress, resulted in reduced cell death in pTr cells, indicating a critical role for ER stress in the activation of autophagy. In conclusion, these results reveal that ZEA-triggered ER stress is critical for the cell fate decision of pTr cells during early porcine embryonic development. Application of small molecules with ability of blocking ER stress might be therapeutic option to reduce the deleterious effect of ZEA in pregnant animals.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Zhian Zhai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China,Corresponding author.
| |
Collapse
|
8
|
Yuan T, Li J, Wang Y, Li M, Yang A, Ren C, Qi D, Zhang N. Effects of Zearalenone on Production Performance, Egg Quality, Ovarian Function and Gut Microbiota of Laying Hens. Toxins (Basel) 2022; 14:toxins14100653. [PMID: 36287922 PMCID: PMC9610152 DOI: 10.3390/toxins14100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) is a ubiquitous contaminant in poultry feed, since ZEN and its metabolites can interfere with estrogen function and affect the reproductive ability of animals. The estrogen-like effect of ZEN on mammal is widely reported, while little information is available, regarding the effect of relatively low dose of ZEN on estrogen function and production performance of laying hens, and the relationship between them. This work was aimed to investigate the effects of ZEN on the production performance, egg quality, ovarian function and gut microbiota of laying hens. A total of 96 Hy-line brown laying hens aged 25-week were randomly divided into 3 groups including basal diet group (BD group), basal diet supplemented with 250 μg/kg (250 μg/kg ZEN group) and 750 μg/kg (750 μg/kg ZEN group) ZEN group. Here, 750 μg/kg ZEN resulted in a significant increase in the feed conversion ratio (FCR) (g feed/g egg) (p < 0.05), a decrease in the egg production (p > 0.05), albumen height and Haugh unit (p > 0.05), compared to the BD group. The serum Follicle-stimulating hormone (FSH) levels significantly decreased in ZEN supplemented groups (p < 0.05). Serum Luteinizing hormone (LH) and Progesterone (P) levels in the 750 μg/kg ZEN group were significantly lower than those in the BD group (p < 0.05). 16S rRNA sequencing indicated that ZEN reduced cecum microbial diversity (p < 0.05) and altered gut microbiota composition. In contrast to 250 μg/kg ZEN, 750 μg/kg ZEN had more dramatic effects on the gut microbiota function. Spearman’s correlation analysis revealed negative correlations between the dominant bacteria of the 750 μg/kg ZEN group and the production performance, egg quality and ovarian function of hens. Overall, ZEN was shown to exert a detrimental effect on production performance, egg quality and ovarian function of laying hens in this study. Moreover, alterations in the composition and function of the gut microbiota induced by ZEN may be involved in the adverse effects of ZEN on laying hens.
Collapse
|
9
|
Yan WK, Liu YN, Song SS, Kang JW, Zhang Y, Lu L, Wei SW, Xu QX, Zhang WQ, Liu XZ, Wu Y, Su RW. Zearalenone affects the growth of endometriosis via estrogen signaling and inflammatory pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113826. [PMID: 36068753 DOI: 10.1016/j.ecoenv.2022.113826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Endometriosis is a chronic, inflammatory, estrogen-dependent gynecological disease characterized by the growth of endometrial stromal cells and glands outside the uterine cavity in response to hormones, which commonly occurs in reproductive-age women. Zearalenone (ZEA) is a toxic metabolite produced by Fusarium, which acts as estrogen activity because of the similarity of its structure to estrogen. In this study, we used an endometriosis mouse model: 15 days after ovariectomy, endometrial fragments were sutured on the pelvic wall, and exogenous estrogen was supplied using an estrogen-releasing silicone tube embedded subcutaneously. Mice were treated with different doses of ZEA by gavage for 21 days. The results show that ZEA significantly inhibited the growth of ectopic endometrium in a dose-dependent manner. The proliferation of cells decreased while apoptosis increased in the ectopic tissues of ZEA-treated mice compared to the vehicle group. The expression of estrogen receptor-α and its downstream targets MUC1 and p-AKT decreased, indicating an impaired estrogen signaling activity by ZEA treatment. In addition, the decreased expression of pro-inflammatory cytokine Tnf-α, Il-1β, and Il-6, the lower number of macrophages and neutrophils cells, and the inhibited NF-κB signaling pathway suggest the inflammatory response in the ectopic endometrium was also suppressed by ZEA treatment. However, when the exogenous estrogen supply is removed, ZEA, in turn, plays an estrogen-like role that promotes cell proliferation in the ectopic endometrium. In summary, our data suggest ZEA acts as an antagonist in endometriotic tissue when estrogen is sufficient but turns to estrogenic activity in the absence of estrogen in the development of endometriosis. ZEA also inhibits ectopic tissue growth by inhibiting inflammatory response in the endometriosis model.
Collapse
Affiliation(s)
- Wan-Kun Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying-Nan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shan-Shan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wang-Qing Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao-Zheng Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yao Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Niazi S, Khan IM, Yue L, Ye H, Lai B, Sameh A K, Mohsin A, Rehman A, Zhang Y, Wang Z. Nanomaterial-based optical and electrochemical aptasensors: A reinforced approach for selective recognition of zearalenone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Kong L, Zhao AH, Wang QW, Feng YQ, Yan ZH, Li MH, Zhang FL, Wang H, Shen KY, Liu Y, Sun YJ, Shen W, Li L. Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147792. [PMID: 34134368 DOI: 10.1016/j.scitotenv.2021.147792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a secondary metabolite, which is mainly produced by Fusarium fungi and exists in various feeds and agricultural products. Recently, an increasing amount of data has shown that ZEN, as an estrogen-like hormone, can have harmful effects on the female reproductive system, especially on oogenesis and folliculogenesis. Breast milk is considered to be the ideal form of nutrition for infants; however, there are some records of contaminants in food, such as mycotoxins, which may be transferred from maternal blood to milk. In this study, we investigated the toxic effects of breast milk on folliculogenesis in offspring following maternal ZEN exposure. Our results showed that maternal ZEN exposure significantly inhibited the process of primordial follicle (PF) assembly and reduced the number of PFs in suckled offspring's ovaries. In addition, RNA-seq analysis showed that RIG-I-like receptor (RLRs) signaling pathways were activated after exposed to ZEN, which increased the expression levels of DNA damage (γ-H2AX, RAD51, and PARP1) and apoptosis related protein (BAX/BCL2 and Caspase-3). Finally, ZEN exposure interfered with follicular development, as evidenced by the reduced percentages of oocyte maturation and embryonic development when the offspring grew to adolescence. It is worth noting that maternal ZEN exposure disrupted the tri-methylation levels of H3K4, H3K9, and H3K27 in the offspring's oocytes. Our results indicated that maternal ZEN exposure affected ovarian development in offspring through the breast milk, which may be detrimental to their reproductive capability in adult life.
Collapse
Affiliation(s)
- Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Qian-Wen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Yu Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Jiang Sun
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, China; Dongying Vocational Institute, Dongying 257091, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Andersen CL, Li R, Ye X. Mouse placental microRNA profiling upon zearalenone exposure. Biol Reprod 2021; 102:5-7. [PMID: 31504204 DOI: 10.1093/biolre/ioz176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/27/2019] [Accepted: 08/26/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Kinkade CW, Rivera-Núñez Z, Gorcyzca L, Aleksunes LM, Barrett ES. Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins (Basel) 2021; 13:373. [PMID: 34073731 PMCID: PMC8225184 DOI: 10.3390/toxins13060373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
Contamination of the world's food supply and animal feed with mycotoxins is a growing concern as global temperatures rise and promote the growth of fungus. Zearalenone (ZEN), an estrogenic mycotoxin produced by Fusarium fungi, is a common contaminant of cereal grains and has also been detected at lower levels in meat, milk, and spices. ZEN's synthetic derivative, zeranol, is used as a growth promoter in United States (US) and Canadian beef production. Experimental research suggests that ZEN and zeranol disrupt the endocrine and reproductive systems, leading to infertility, polycystic ovarian syndrome-like phenotypes, pregnancy loss, and low birth weight. With widespread human dietary exposure and growing experimental evidence of endocrine-disrupting properties, a comprehensive review of the impact of ZEN, zeranol, and their metabolites on the female reproductive system is warranted. The objective of this systematic review was to summarize the in vitro, in vivo, and epidemiological literature and evaluate the potential impact of ZEN, zeranol, and their metabolites (commonly referred to as mycoestrogens) on female reproductive outcomes. We conducted a systematic review (PROSPERO registration CRD42020166469) of the literature (2000-2020) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The data sources were primary literature published in English obtained from searching PubMed, Web of Science, and Scopus. The ToxR tool was applied to assess risk of bias. In vitro and in vivo studies (n = 104) were identified and, overall, evidence consistently supported adverse effects of mycoestrogens on physiological processes, organs, and tissues associated with female reproduction. In non-pregnant animals, mycoestrogens alter follicular profiles in the ovary, disrupt estrus cycling, and increase myometrium thickness. Furthermore, during pregnancy, mycoestrogen exposure contributes to placental hemorrhage, stillbirth, and impaired fetal growth. No epidemiological studies fitting the inclusion criteria were identified.
Collapse
Affiliation(s)
- Carolyn W. Kinkade
- Joint Graduate Program in Exposure Science, Department of Environmental Sciences, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Ludwik Gorcyzca
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ 08554, USA;
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily S. Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Zhou Y, Zhang D, Sun D, Cui S. Zearalenone affects reproductive functions of male offspring via transgenerational cytotoxicity on spermatogonia in mouse. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108766. [PMID: 32339757 DOI: 10.1016/j.cbpc.2020.108766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/22/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that Zearalenone (ZEA) affects not only maternal reproductive function but also that of the offspring. However, the transgenerational toxic effects of ZEA on the spermatogonia of male F1 mice are not clear. The present study was thus designed to determine whether the fertility of male F1 mice was affected following exposure of F0 pregnant mice to ZEA. In present study, 32 pregnant female mice were divided into 4 groups and exposed to ZEA of 0, 2.5 and 5.0 mg/kg, respectively, and the testis development and reproductive performance of 96 male F1 mice were analyzed. The results demonstrated that the F0 pregnant mice treated with ZEA resulted in increased anogenital distances in the newborn male F1 mice. Moreover, ZEA caused abnormal vacuole structures and loose connections in the testes of male F1 offspring, compared with the controls. Further ultramicrostructural analysis showed that the mitochondria appeared to be vacuolated with ablated membranes and cristae, and this was accompanied by the presence of large lipid droplets in the spermatogonia. Further, the semen quality and sperm counts declined significantly, and increased malformation rates and decreased testosterone levels were observed in the male F1 offspring from experimental groups. Our results reveal the toxic effects of ZEA on F0 pregnant mice is transgenerational, and affects the fertility of male F1 mice by damaging the spermatogonial cells. This offers a new viewpoint of ZEA-induced reproductive toxicity in male animals and provides a new potential direction for the treatment and prevention of ZEA-induced cytotoxicity.
Collapse
Affiliation(s)
- Yewen Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dehao Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|