1
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Schmidt S. Aged before Their Time: Atrazine and Diminished Egg Quality in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:124001. [PMID: 36520536 PMCID: PMC9754090 DOI: 10.1289/ehp12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
|
3
|
Park S, Hong T, Song G, Lim W. Aclonifen could induce implantation failure during early embryonic development through apoptosis of porcine trophectoderm and uterine luminal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105288. [PMID: 36464341 DOI: 10.1016/j.pestbp.2022.105288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Aclonifen is a diphenyl-ether herbicide that is used to control the growth of weeds while growing crops such as corn and wheat. Although the biochemical effects of aclonifen are well characterized, including its ability to inhibit protoporphyrinogen oxidase and carotenoid synthesis, the toxicity of aclonifen in embryonic implantation and development during early pregnancy, has not been reported. Thus, in this study, we investigated the potential interference of aclonifen in embryonic implantation using porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells isolated during implantation period of early pregnancy. Cell viability in both pTr and pLE cells significantly decreased in a dose-dependent manner following aclonifen treatment. Moreover, the proportion of cells in the sub-G1 phase of the cell cycle gradually increased upon treatment with increasing concentrations of aclonifen, which in turn led to an increase in the number of apoptotic cells, as determined by annexin V and propidium iodide staining. Aclonifen treatment caused mitochondrial dysfunction by increasing the depolarization of the mitochondrial membrane potential and the mitochondrial calcium concentration. Aclonifen inhibited cell mobility by suppressing the expression of implantation-related genes in pTr and pLE cells. To explore the underlying mechanism, we evaluated the phosphorylation of PI3K and MAPK signaling molecules. The phosphorylation of AKT, S6, JNK, and ERK1/2 were significantly increased by aclonifen. Collectively, our results suggest that aclonifen may interrupt implantation during early pregnancy by disrupting maternal-fetal interaction.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea; Department of GreenBio Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Wróbel MH, Młynarczuk J, Rękawiecki R. Do commonly used herbicides (atrazine and glyphosate) have the potential to impair the contractions, prostaglandin releasing and conducting of oxytocin signal at the bovine cervix in vitro? Theriogenology 2022; 183:26-35. [PMID: 35193057 DOI: 10.1016/j.theriogenology.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Glyphosate (Gly) and atrazine (Atr) are among the most commonly used herbicides in global agriculture. It was previously shown that both Atr and Gly impair the ovarian and uterine secretion of regulators of myometrial motility (oxytocin (OT) or prostaglandins (PGs)) in cows, and Atr can also decrease the force of contractions in strips from the uterine horn. Hence, the aim of this study was to compare the effects of Atr and Gly on the motor and secretory function of the bovine cervix in vitro as well as receptivity and signal transduction in cervical cell cultures. Cervical strips or cells obtained from cows before ovulation were treated with environmental doses of Atr or Gly (0.1-10 ng/ml) since these herbicides exerted no cytotoxic effect at a dose of 100 ng/ml. Only Atr increased the force of cervical contractions, while both Atr and Gly decreased the secretion of prostaglandins (PGs) without disturbing their synthesis. Moreover, Atr decreased the mRNA expression and protein level of oxytocin receptor (OTR), while Gly increased OTR protein levels. Both Atr and Gly decreased the contents of gap junction proteins (GAPs), Atr decreased the contents of second messengers (diacylglycerol - DAG, inositol-tris-phosphate - IP3), and Gly decreased the level of myosin light chain kinase (MLCK) but increased DAG levels. Atr directly enhanced the cervical strips contractions. Both herbicides disturbed cellular signalling and inhibited PGs secretion. It suggest that Atr and Gly have the potential to impair the activity of cervical cells in vitro, which might be followed by failure of maintenance with gestation.
Collapse
Affiliation(s)
- Michał Hubert Wróbel
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland.
| | - Jarosław Młynarczuk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Robert Rękawiecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| |
Collapse
|
5
|
Lu YS, Yang SL, Gou CL, Wang XL, Wen X, He XR, Guo XX, Xu YY, Yu J, Qiu J, Qian YZ. Integrated metabolomics and transcriptomics analysis reveals new biomarkers and mechanistic insights on atrazine exposures in MCF‑7 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113244. [PMID: 35093817 DOI: 10.1016/j.ecoenv.2022.113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide worldwide and is a long-suspected endocrine-disrupting chemical. However, most endocrine-disrupting toxicity studies on ATZ have been based on animal models and those investigating inner mechanisms have only focused on a few genes. Therefore, the possible link between ATZ and endocrine-disrupting toxicity is still unclear. In this study, multi-omics and molecular biology techniques were used to elucidate the possible molecular mechanisms underlying the effect of ATZ exposure on MCF-7 proliferation at environmentally relevant concentrations. Our study is the first report on ATZ-induced one carbon pool by folate metabolic disorder in MCF-7 cells. A concentration of 1 μM ATZ yielded the highest cell viability and was selected for further mechanistic studies. A total of 34 significantly changed metabolites were identified based on metabolomic analysis, including vitamins, amino acids, fatty acids, and corresponding derivatives. Folate and pyridoxal have potential as biomarkers of ATZ exposure. One carbon pool by folate metabolic pathway was identified based on metabolic pathway analysis of the significantly altered pathways. Moreover, FTCD and MTHFD related to this pathway were further identified based on transcriptomic analysis and protein assays. Folate and different forms of 5,6,7,8-tetrahydrofolate, which participate in purine synthesis and associate with methyl groups (SOPC, arachidonic acid, and L-tryptophan) in one carbon pool by the folate metabolic pathway, potentially promote MCF-7 cell proliferation. These findings on the key metabolites and regulation of the related differentially expressed genes in folate metabolism will shed light on the mechanism of MCF-7 cell proliferation after ATZ exposure. Overall, this study provides new insights into the mechanistic understanding of toxicity caused by endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shang-Lin Yang
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Chun-Lin Gou
- Institute of Quality Standard and Testing Technology for Agro-Products of NingXia, Yinchuan 750002, China
| | - Xin-Lu Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Wen
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Xiao-Rong He
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Xiao-Xuan Guo
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
An G, Park W, Lim W, Song G. Fluroxypyr-1-methylheptyl ester causes apoptosis of bovine mammary gland epithelial cells by regulating PI3K and MAPK signaling pathways and endoplasmic reticulum stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:105003. [PMID: 34955186 DOI: 10.1016/j.pestbp.2021.105003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Fluroxypyr-1-methylheptyl ester (FPMH) is an auxin herbicide that is widely applied to crops and pastures to block growth of post-emergence weeds. Several studies have reported the toxicity of FPMH in aquatic vertebrates. However, the adverse impacts of FPMH on mammals, including domestic animals, have not been reported. The purpose of our current study is to assess the impact of FPMH on the bovine mammary system and milk production. To evaluate the toxicity of FPMH on the mammary glands of lactating cows, the bovine mammary gland epithelial cell line, MAC-T, was exposed to various concentrations (0, 5, 7.5, 10, 15, and 20 μM) of FPMH for 24 h, and then various assessments were performed. The results showed that FPMH dose-dependently reduced MAC-T cell viability following exposure to FPMH and induced mitochondrial depolarization and apoptosis. FPMH also modulated signaling through the PI3K and MAPK pathways. In addition, the expression levels of proteins related to endoplasmic reticulum (ER) stress were upregulated, indicating induction of ER stress, and calcium homeostasis was disrupted following FPMH treatment. In conclusion, our investigation suggests that FPMH may be toxic to the bovine mammary system and may decrease dairy production.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Harper AP, Finger BJ, Green MP. Chronic Atrazine Exposure Beginning Prenatally Impacts Liver Function and Sperm Concentration With Multi-Generational Consequences in Mice. Front Endocrinol (Lausanne) 2020; 11:580124. [PMID: 33324343 PMCID: PMC7726345 DOI: 10.3389/fendo.2020.580124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Atrazine is a commonly used herbicide frequently detected in waterways and drinking water around the world. Worryingly, atrazine is an endocrine and metabolic disruptor but there is a lack of research regarding the effects of long-term exposure beginning in utero. In this study we investigated how chronic exposure to atrazine (5 mg/kg bw/day) in drinking water from E9.5 until 12 or 26 weeks of age affected metabolic and reproductive characteristics in male mice. We then examined whether mating these males to unexposed females altered in vitro embryo characteristics. Atrazine exposure caused a decrease in liver weight and changes in both liver and testis gene expression, specifically in genes involved in lipid uptake and fatty acid metabolism in the liver, as well as androgen conversion in the testis. Notably, atrazine exposure decreased epididymal sperm concentration and subsequent embryo cell numbers generated from the 12-week cohort males. Collectively, these data suggest that atrazine exposure, beginning prenatally, affects both metabolic and reproductive characteristics, and highlights the importance of assessing atrazine effects at different life stages and over multiple generations. The continued widespread use of atrazine warrants further studies, as it is essential to understand the health risks for all species, including humans.
Collapse
Affiliation(s)
| | | | - Mark P. Green
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| |
Collapse
|