1
|
Benotmane MA, Trott KR. Epidemiological and experimental evidence for radiation-induced health effects in the progeny after exposure in utero. Int J Radiat Biol 2023; 100:1264-1275. [PMID: 38079348 DOI: 10.1080/09553002.2023.2283088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 08/30/2024]
Abstract
PURPOSE It has been known for many decades that radiation exposure of the developing embryo or fetus may cause two fundamentally different types of severe health effects: on the one hand, radiation may interfere with the normal intrauterine development, on the other hand, radiation may induce leukemia and cancer which become manifest in childhood. A large amount of epidemiological and experimental data has recently been presented which might be used to improve our understanding of underlying mechanisms and setting radiation protection standards. Yet, ecological studies in the populations exposed to increased levels of radiation in regions contaminated by radioactivity released from reactor accidents (Chernobyl, Fukushima) do not provide solid evidence which would contribute to this aim. On the other hand, well designed experimental studies demonstrated the multifactorial mechanisms which lead to different health effects after radiation exposure in utero. CONCLUSION There is no convincing evidence, neither from epidemiological nor experimental data of the existence of a dose threshold for developmental defects after radiation exposure in utero. This must be taken into account in the revision of rules and regulations of radiation protection in medicine.
Collapse
Affiliation(s)
| | - Klaus Ruediger Trott
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Gao Y, Liu L, Zhang Z, Qin C, Yang B, Ke Y. TYRP1 Protects Against the Apoptosis and Oxidative Stress of Retinal Ganglion Cells by Binding to PMEL. Ocul Immunol Inflamm 2023; 31:1024-1034. [PMID: 35708352 DOI: 10.1080/09273948.2022.2081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This research aimed to dissect the function of TYRP1 and PMEL in glaucomatous animal and cell models. METHODS A chronic ocular hypertension (COH) rat model was induced in the right eyes of rats through the electrocoagulation of superficial iris veins. In addition, an oxygen-glucose deprivation (OGD)-retinal ganglion cell (RGC) model was constructed through OGD. TYRP1 and PMEL expression was altered in the animal and cell models to explore their effects. RESULTS TYRP1 and PMEL expression was poor in glaucoma patients, COH rats, and OGD-RGCs. Mechanistically, TYRP1 interacted with PMEL to upregulate PMEL in OGD-RGCs. TYRP1 overexpression enhanced viability and diminished apoptosis and oxidative stress of OGD-RGCs, which was abolished by PMEL knockdown. TYRP1 upregulation reduced intraocular pressure, RGC apoptosis, and oxidative stress in COH rats, which was reversed by PMEL knockdown. CONCLUSIONS TYRP1 elevates PMEL expression to reduce RGC apoptosis and oxidative stress in vivo and in vitro.
Collapse
Affiliation(s)
- Yanlin Gao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Lei Liu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Chunxiu Qin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, P.R. China
| | - Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| |
Collapse
|
3
|
Selzer EB, Blain D, Hufnagel RB, Lupo PJ, Mitchell LE, Brooks BP. Review of Evidence for Environmental Causes of Uveal Coloboma. Surv Ophthalmol 2021; 67:1031-1047. [PMID: 34979194 DOI: 10.1016/j.survophthal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Uveal coloboma is a condition defined by missing ocular tissues and is a significant cause of childhood blindness. It occurs from a failure of the optic fissure to close during embryonic development,and may lead to missing parts of the iris, ciliary body, retina, choroid, and optic nerve. Because there is no treatment for coloboma, efforts have focused on prevention. While several genetic causes of coloboma have been identified, little definitive research exists regarding the environmental causes of this condition. We review the current literature on environmental factors associated with coloboma in an effort to guide future research and preventative counseling related to this condition.
Collapse
Affiliation(s)
- Evan B Selzer
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
4
|
Craenen K, Verslegers M, Callaerts-Vegh Z, Craeghs L, Buset J, Govaerts K, Neefs M, Gsell W, Baatout S, D'Hooge R, Himmelreich U, Moons L, Benotmane MA. Folic Acid Fortification Prevents Morphological and Behavioral Consequences of X-Ray Exposure During Neurulation. Front Behav Neurosci 2021; 14:609660. [PMID: 33488367 PMCID: PMC7820780 DOI: 10.3389/fnbeh.2020.609660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Kristof Govaerts
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Neefs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Willy Gsell
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieve Moons
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| |
Collapse
|