1
|
Zhu J, Guo S, Cao J, Zhao H, Ma Y, Zou H, Ju H, Liu Z, Li J. Epigenetic Modifications Are Involved in Transgenerational Inheritance of Cadmium Reproductive Toxicity in Mouse Oocytes. Int J Mol Sci 2024; 25:10996. [PMID: 39456778 PMCID: PMC11507422 DOI: 10.3390/ijms252010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Maternal cadmium exposure during pregnancy has been demonstrated to have detrimental effects on offspring development. However, the impact of maternal cadmium exposure on offspring oocytes remains largely unknown, and the underlying mechanisms are not fully understood. In this study, we found that maternal cadmium exposure during pregnancy resulted in selective alteration in epigenetic modifications of mouse oocytes in offspring, including a decrease in H3K4me2 and H4K12ac, as well as an increase in DNA methylation of H19. Although ROS levels and mitochondrial activity remain at normal levels, the DNA damage marker γH2AX was significantly increased and the DNA repair marker DNA-PKcs was remarkably decreased in offspring oocytes from maternal cadmium exposure. These alterations are responsible for the decrease in the quality of mouse oocytes in offspring induced by maternal cadmium exposure. As a result, the meiotic maturation of oocytes and subsequent early embryonic development are influenced by maternal cadmium exposure. RNA-seq results showed that maternal cadmium exposure elicits modifications in the expression of genes associated with metabolism, signal transduction, and endocrine regulation in offspring ovaries, which also contribute to the disorders of oocyte maturation and failures in early embryonic development. Our research provides direct evidence of transgenerational epigenetic inheritance of cadmium reproductive toxicity in mouse germ cells.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shuai Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Jiangqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Hangbin Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Xiao C, Lai D. Impact of oxidative stress induced by heavy metals on ovarian function. J Appl Toxicol 2024. [PMID: 38938153 DOI: 10.1002/jat.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
As a crucial organ of the female reproductive system, the ovary has both reproductive and endocrine functions. Oxidative stress refers to an increase in intracellular reactive oxygen species (ROS), which play a role in the normal physiological activity of the ovary. However, excessive ROS can cause damage to the ovary. With the advancement of human industrial activities, heavy metal pollution has become increasingly severe. Heavy metals cause oxidative stress through both direct and indirect mechanisms, leading to changes in signal transduction pathways that damage the ovaries. This review aims to outline the adverse effects of oxidative stress on the ovaries triggered by heavy metals such as copper, arsenic, cadmium, mercury, and lead. The detrimental effects of heavy metals on ovaries include follicular atresia and decreased estrogen production in experimental animals, and they also cause premature ovarian insufficiency in women. Additionally, this review discusses the role of antioxidants, provides some treatment methods, summarizes the limitations of current research, and offers perspectives for future research directions.
Collapse
Affiliation(s)
- Chengqi Xiao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
3
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
4
|
Wnuk E, Zwolak I, Kochanowicz E. The physiological levels of epigallocatechin gallate (EGCG) enhance the Cd-induced oxidative stress and apoptosis in CHO-K1 cells. Sci Rep 2024; 14:13625. [PMID: 38871787 DOI: 10.1038/s41598-024-64478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Currently, the increasing pollution of the environment by heavy metals is observed, caused both by natural factors and those related to human activity. They pose a significant threat to human health and life. It is therefore important to find an effective way of protecting organisms from their adverse effects. One potential product showing a protective effect is green tea. It has been shown that EGCG, which is found in large amounts in green tea, has strong antioxidant properties and can therefore protect cells from the adverse effects of heavy metals. Therefore, the aim of the study was to investigate the effect of EGCG on cells exposed to Cd. In the study, CHO-K1 cells (Chinese hamster ovary cell line) were treated for 24 h with Cd (5 and 10 µM) and EGCG (0.5 and 1 µM) together or separately. Cell viability, ATP content, total ROS activity, mitochondrial membrane potential and apoptosis potential were determined. The results showed that, in tested concentrations, EGCG enhanced the negative effect of Cd. Further analyses are needed to determine the exact mechanism of action of EGCG due to the small number of publications on the subject and the differences in the results obtained in the research.
Collapse
Affiliation(s)
- Ewa Wnuk
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| | - Iwona Zwolak
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Elzbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1I, 20-708, Lublin, Poland
| |
Collapse
|
5
|
Wang X, Zhang Y, Peng J, Zhang H, Jiang T, Zhang Z, Yin T, Su X, Zhang T, Shen L, He S, Wang X, Li D, Yue X, Ji D, Zhang D, Dong R, Zou W, Liang D, Liu Y, Du Y, Zhang Z, Cao Y, Liang C, Ji D. Association Between Exposure to Multiple Toxic Metals in Follicular Fluid and the Risk of PCOS Among Infertile Women: The Mediating Effect of Metabolic Markers. Biol Trace Elem Res 2024:10.1007/s12011-024-04236-y. [PMID: 38789898 DOI: 10.1007/s12011-024-04236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) severely affects women's fertility and accompanies serious metabolic disturbances, affecting 5%-20% of women of reproductive age globally. We previously found that exposure to toxic metals in the blood raised the risk of PCOS, but the association between exposure to toxic metals and the risk of PCOS in the follicular fluid, the microenvironment for oocyte growth and development in females, and its effect on metabolism has not been reported. This study aimed to evaluate the associations between the concentrations of cadmium (Cd), mercury (Hg), barium (Ba) and arsenic (As) in FF and the risk of PCOS, and to explore the mediating effect of metabolic markers in FF on the above relationship. We conducted a case-control study, including 557 women with PCOS and 651 controls. Ba, Cd, Hg and As levels in FF were measured by ICP-MS, metabolites levels in FF was measured by LC-MS/MS among 168 participants randomly selected from all the participants. Logistic regression models were used to assess the association of a single metal level with the PCOS risk, and linear regression models were used to assess the relationships of a single metal level with clinical phenotype parameters and metabolites levels. Combined effect of metals mixture levels on the risk of PCOS were assessed via weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR). Medication analysis was performed to explore the role of metabolic markers on the relationship of toxic metals levels with the risk of PCOS. The exposure levels of Cd, Hg, Ba and As in FF were all positively and significantly associated with the PCOS risk (with respect to the highest vs. lowest tertile group: OR = 1.57, 95% CI = 1.17 ~ 2.12 for Cd, OR = 1.69, 95% CI = 1.22 ~ 2.34 for Hg, OR = 1.76, 95% CI = 1.32 ~ 2.34 for Ba, OR = 1.42, 95% CI = 1.05 ~ 1.91 for As). In addition, levels of metal mixture also significantly correlated with the risk of PCOS, Cd level contributed most to it. Moreover, we observed significant positive relationships between Cd level and LH (β = 0.048, 95% CI = 0.002 ~ 0.094), T (β = 0.077, 95% CI = 0.029 ~ 0.125) and HOMA-IR value (β = 0.060, 95% CI = 0.012 ~ 0.107), as well as Hg level with LH, FSH/LH ratio and TC. Furthermore, we revealed that estrone sulfate, LysoPE 22:6 and N-Undecanoylglycine were significantly and positively mediating the association between Cd level and the risk of PCOS (with mediated proportion of 0.39, 0.24 and 0.35, respectively), and between Hg level and the risk of PCOS (with mediated proportion of 0.29, 0.20 and 0.46, respectively). These highly expressed metabolites significantly enriched in the fatty acid oxidation, steroid hormone biosynthesis and glycerophospholipids metabolism, which may explain the reason why the levels of Cd and Hg in FF associated with the phenotype of PCOS. Ba and As in FF was not found the above phenomenon. Our results suggested that exposure to multiple toxic metals (Cd, Hg, Ba and As) in FF associated with the increased risk of PCOS, Cd was a major contributor. Levels of Cd and Hg in FF significantly associated with the phenotype of PCOS. The above association may result from that Cd and Hg in FF related with the disturbance of fatty acid oxidation, steroid hormone biosynthesis and the glycerophospholipids metabolism.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Peng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Su
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaolei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Danyang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Duoxu Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Dong
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Bhardwaj JK, Bikal P, Sachdeva SN. Cadmium as an ovarian toxicant: A review. J Appl Toxicol 2024; 44:129-147. [PMID: 37587800 DOI: 10.1002/jat.4526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Cadmium (Cd) is a ubiquitous heavy metal toxicant with no biological function in the human body. Considerably, because of its long biological half-life and very low excretion rate, Cd is inclined to accumulate and cause deleterious effects on various body organs (e.g., liver, kidney, and ovary) in humans and animals. Ovaries are the most vulnerable targets of Cd toxicity. Cd has been shown to induce oxidative stress, follicular atresia, hormonal imbalance, and impairment of oocyte growth and development. Moreover, Cd toxicity has been associated with increasing incidences of menstrual disorders, pregnancy loss, preterm births, delayed puberty, and female infertility. Therefore, it is crucial to understand how Cd poisoning impacts specific ovarian processes for the development of preventive interventions to enhance female fertility. The current review attempts to collate the recent findings on Cd-induced oxidative stress, follicular apoptosis, steroid synthesis inhibition, and teratogenic toxicity, along with their possible mechanisms in the ovarian tissue of different animal species. Additionally, the review also summarizes the studies related to the use of many antioxidants, medicinal herbs, and other compounds as remedial approaches for managing Cd-induced ovarian toxicity.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Prerna Bikal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology Kurukshetra, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
7
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
8
|
Miglietta S, Cristiano L, Battaglione E, Macchiarelli G, Nottola SA, De Marco MP, Costanzi F, Schimberni M, Colacurci N, Caserta D, Familiari G. Heavy Metals in Follicular Fluid Affect the Ultrastructure of the Human Mature Cumulus-Oocyte Complex. Cells 2023; 12:2577. [PMID: 37947655 PMCID: PMC10650507 DOI: 10.3390/cells12212577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
It is known that exposure to heavy metal such as lead (Pb) and cadmium (Cd) has several adverse effects, particularly on the human reproductive system. Pb and Cd have been associated with infertility in both men and women. In pregnant women, they have been associated with spontaneous abortion, preterm birth, and impairment of the development of the fetus. Since these heavy metals come from both natural and anthropogenic activities and their harmful effects have been observed even at low levels of exposure, exposure to them remains a public health issue, especially for the reproductive system. Given this, the present study aimed to investigate the potential reproductive effects of Pb and Cd levels in the follicular fluid (FF) of infertile women and non-smokers exposed to heavy metals for professional reasons or as a result of living in rural areas near landfills and waste disposal areas in order to correlate the intrafollicular presence of these metals with possible alterations in the ultrastructure of human cumulus-oocyte complexes (COCs), which are probably responsible for infertility. Blood and FF metals were measured using atomic absorption spectrometry. COCs corresponding to each FF analyzed were subjected to ultrastructural analyses using transmission electron microscopy. We demonstrated for the first time that intrafollicular levels of Pb (0.66 µg/dL-0.85 µg/dL) and Cd (0.26 µg/L-0.41 µg/L) could be associated with morphological alterations of both the oocyte and cumulus cells' (CCs) ultrastructure. Since blood Cd levels (0.54 µg/L-1.87 µg/L) were above the current reference values established by the guidelines of the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA) (0.4 µg/L), whereas blood Pb levels (1.28 µg/dL-3.98 µg/dL) were below the ATSDR reference values (≤5 µg/dL), we believe that these alterations could be due especially to Cd, even if we cannot exclude a possible additional effect of Pb. Our results highlighted that oocytes were affected in maturation and quality, whereas CCs showed scarcely active steroidogenic elements. Regressing CCs, with cytoplasmic alterations, were also numerous. According to Cd's endocrine-disrupting activity, the poor steroidogenic activity of CCs might correlate with delayed oocyte cytoplasmic maturation. So, we conclude that levels of heavy metals in the blood and the FF might negatively affect fertilization, embryo development, and pregnancy, compromising oocyte competence in fertilization both directly and indirectly, impairing CC steroidogenic activity, and inducing CC apoptosis.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Guido Macchiarelli
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Maria Paola De Marco
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Flavia Costanzi
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Mauro Schimberni
- GENERA Centers for Reproductive Medicine, Clinica Valle Giulia, 00197 Rome, Italy;
| | - Nicola Colacurci
- Department of Woman Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| |
Collapse
|
9
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Gwon MA, Kim MJ, Kang HG, Joo YE, Jeon SB, Jeong PS, Kim SU, Sim BW, Koo DB, Song BS. Cadmium exposure impairs oocyte meiotic maturation by inducing endoplasmic reticulum stress in vitro maturation of porcine oocytes. Toxicol In Vitro 2023; 91:105615. [PMID: 37207789 DOI: 10.1016/j.tiv.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is toxic metal that can induce various diseases, such as cardiovascular, nervous, and reproductive systems. This study investigated the effect of Cd exposure on porcine oocyte maturation and the underlying mechanism. Porcine cumulus-oocyte complexes were exposed various Cd concentration and tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress during in vitro maturation (IVM). After IVM, we evaluated meiotic maturation, ER stress, and oocyte quality by Cd exposure. Cd exposure inhibited cumulus cell expansion and meiotic maturation, increased oocyte degeneration, and induced ER stress. The levels of spliced XBP1 and ER stress-associated transcripts, markers of ER stress, were elevated in Cd-treated cumulus-oocyte complexes and denuded oocytes during IVM. Moreover, Cd-induced ER stress impaired oocyte quality by disrupting mitochondrial function and elevating intracellular reactive oxygen species levels while decreasing ER function. Interestingly, TUDCA supplementation significantly decreased the expression of ER stress-related genes and increased the quantity of ER compared with the Cd treatment. Additionally, TUDCA was also able to rescue excessive levels of ROS and restore normal mitochondrial function. Moreover, the addition of TUDCA under Cd exposure greatly ameliorated Cd-mediated detrimental effects on meiotic maturation and oocyte quality, including cumulus cell expansion and MII rate. These findings suggest that Cd exposure during IVM impairs the meiotic maturation of oocytes by inducing of ER stress.
Collapse
Affiliation(s)
- Min-Ah Gwon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Ye Eun Joo
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea.
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea.
| |
Collapse
|
11
|
Zhao SC, Qiao FX, Sun MX, Liu YC, Wang HL, Xu ZR, Liu Y. Cobalt chloride exposure disturbs spindle assembly and decreases mouse oocyte development potential. Toxicology 2023; 486:153450. [PMID: 36739938 DOI: 10.1016/j.tox.2023.153450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Cobalt is a kind of heavy metal which is widely used in petrochemical and biomedical industries. Animal studies have reported that cobalt would exert systemic toxicity, but its effects on the ovarian function in mammals, especially for oocyte quality remains unknown. In the present study, we report that cobalt chloride treatment affects ovary coefficient and follicular growth. Oocytes in cobalt chloride exposed mice exhibited a decreased development potential, with the evidence of decreased occurrence rate of germ vesicle breakdown and polar body extrusion. Besides, cobalt chloride disorganized meiotic spindle formation and movement, mechanically associated with affecting TACC3 and Ac-a-tubulin levels, and disturbing actin reorganization. In addition, cobalt chloride exposure result in mitochondrial cristae structures disappear, cluster distribution and potential depolarization. Altogether, these findings suggest that cobalt chloride impairs the ovarian follicle growth and affects oocyte development by disrupted spindle assembly and mitochondrial function.
Collapse
Affiliation(s)
- Si-Cheng Zhao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China; Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
12
|
Martino NA, Picardi E, Ciani E, D’Erchia AM, Bogliolo L, Ariu F, Mastrorocco A, Temerario L, Mansi L, Palumbo V, Pesole G, Dell’Aquila ME. Cumulus Cell Transcriptome after Cumulus-Oocyte Complex Exposure to Nanomolar Cadmium in an In Vitro Animal Model of Prepubertal and Adult Age. BIOLOGY 2023; 12:biology12020249. [PMID: 36829526 PMCID: PMC9953098 DOI: 10.3390/biology12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.
Collapse
Affiliation(s)
- Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443888
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Valeria Palumbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
13
|
Toxic Effects of Cadmium on the Female Reproductive Organs a Review. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Cadmium (Cd) is a common environmental pollutant present in soil and associated with many modern industrial processes. Cadmium may adversely influence the health of experimental animals and humans and exert significant effects on the reproductive tract morphology and physiology. During embryonic development, cadmium suppresses the normal growth and development of the ovaries, and in adults it disrupts the morphology and function of the ovaries and uterus. The exposure to cadmium has adverse effects on the oocyte meiotic maturation affecting the structure of ovarian tissue. The distribution of follicles and corpus luteum in the ovarian tissues has been shown to be disrupted, affecting the normal growth and development of the follicles. In the ovarian cortex, the number of follicles at different stages of maturation decreased, and the number of atretic follicles increased. In the medulla, oedema and ovarian haemorrhage and necrosis appears at higher doses. Granulosa cells exposed to cadmium exhibited morphological alterations. Oocyte development was inhibited and the amount of oocyte apoptosis was higher. Cadmium exposure also caused changes in the structure of the ovarian blood vessels with reduction in the vascular area. Cadmium effects included increased uterine weight, hyperplasia and hypertrophy of the endometrial lining. Exposure to cadmium had specific effects on gonadal steroidogenesis by suppressing steroid biosynthesis of the ovarian granulosa cells and luteal cells. Progesterone, follicle stimulating hormone, and luteinizing hormone decreased significantly after CdCl2 administration. Cadmium can suppress the female’s ovulation process and cause temporary infertility.
Collapse
|
14
|
Qu J, Wang Q, Sun X, Li Y. The environment and female reproduction: Potential mechanism of cadmium poisoning to the growth and development of ovarian follicle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114029. [PMID: 36055045 DOI: 10.1016/j.ecoenv.2022.114029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is ubiquitous in our environment and can easily bioaccumulate into the organism after passage through the respiratory and digestive tracts. Long-term exposure to Cd can result in the significant bioaccumulation in organism because of its long biological high-life (10-30 years), which exerts irreversible damages on the health of animals and humans. Although there are increased evidence of impeding the normal function of female reproduction resulted from Cd exposure, the mechanism of the negative action of Cd on the growth and development of ovarian follicle remains enigmatic. Thus, the purpose of the presented study is to summarize available literature which describing Cd-related toxicity involved in the adverse effects on the growth and development of the ovarian follicle. In conclusion, it is suggested that Cd causes damage to the folliculogenesis of mammalians, which results in the decline in the number and quality of ovulated oocytes and the failure in the fertilization. The mechanism behinds that may be linked to the interference to the production of reproductive hormones and the augment of reactive oxygen species (ROS). Furthermore, the enhanced ROS, in turn, impairs various molecules including proteins, lipids and DNA, as well as the balance of the antioxidant defense system, mitochondrial homeostasis, endoplasmic reticulum, autophagy and epigenetic modification. This review is expected to elaborate the toxic mechanism of Cd exposure to the growth and development of ovarian follicles and provide essential remediation strategies to alleviate the damage of Cd to female reproductive health.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Department of Animal Science, University of Vermont, Burlington, VT 05405, USA.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Li C, Wang B, Lu X, Huang Y, Wang H, Xu D, Zhang J. Maternal exposure to cadmium from puberty through lactation induces abnormal reproductive development in female offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113927. [PMID: 35908533 DOI: 10.1016/j.ecoenv.2022.113927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Four-week-old female ICR mice were exposed to Cd through drinking water from puberty through lactation to investigate the effects of reproductive development in female offspring. Our results showed that maternal Cd exposure from puberty to lactation induced vaginal opening delay, and disturbed estrous cycle in the offspring on postnatal day (PND) 21, without affecting the body weight at vaginal opening. The histopathology results showed the increased primordial follicles and the decreased secondary follicles, and the mRNA level of Amh increased in the offspring's ovaries upon Cd exposure, suggesting the inhibition of ovarian follicular development on PND21. Moreover, the level of serum estradiol reduced and genes associated with steroidogenesis (3β-Hsd, P450scc and P450arom) were downregulated upon Cd exposure on PND 21. Thus, Cd may inhibit the follicular development via disturbing the mRNA level of genes associated with steroidogenesis and then the synthesis of estradiol in prepuberty. Taken together, despite the lack of attention to estrous cycle at termination, maternal Cd exposure from puberty to lactation induced the adverse effects on reproductive development of female offspring, including the delay of vaginal opening, irregular estrous cycle and inhibition of follicular development, via disturbing the mRNA level of genes associated with follicular development and steroidogenesis.
Collapse
Affiliation(s)
- Chengxi Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Piras AR, Ariu F, Maltana A, Leoni GG, Martino NA, Mastrorocco A, Dell'Aquila ME, Bogliolo L. Protective effect of resveratrol against cadmium-induced toxicity on ovine oocyte in vitro maturation and fertilization. J Anim Sci Biotechnol 2022; 13:83. [PMID: 35864507 PMCID: PMC9306212 DOI: 10.1186/s40104-022-00731-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might negatively affect female reproduction and fertility. It has been reported that Cd exposure impaired the quality of oocytes and led to a defective maturation and fertilization, through oxidative stress induction. Resveratrol (Res) is a natural polyphenol with strong antioxidant properties that exhibited protective role in preventing oocyte redox homeostasis disruption and quality decline. Here, we explored whether the addition of Res to in vitro maturation (IVM) medium might act as a protection against Cd-induced toxicity on ovine oocyte maturation and fertilization. Firstly, we evaluated the effect of supplementing IVM medium with two different Res concentrations (1 and 2 μmol/L) on nuclear maturation and fertilization of oocytes matured under CdCl2 (2 μmol/L) exposure. Therefore, the concentration of 1 μmol/L Res was selected to analyse the effects of this compound on intracellular ROS levels, mitochondrial (mt) distribution and activity, chromatin configuration, cytoskeleton morphology, cortical granules (CGs) distribution and mRNA expression of genes associated with cellular response to oxidative stress (i.e. SIRT1, SOD 1, GPX1, GSR, CAT) in Cd-exposed in vitro matured oocytes. Results We found that 1 μmol/L Res restored the reduced oocyte meiotic competence induced by Cd exposure as well as, Res sustained oocyte ability to be normally fertilized and decreased polyspermic fertilization at both tested concentrations. Moreover, we demonstrated that 1 μmol/L Res mitigated Cd-induced alterations of oocyte cytoplasmic maturation by reducing reactive oxygen species (ROS) accumulation, preventing mt dysfunction, maintaining the correct meiotic spindle and cortical F-actin assembly and the normal cortical granule distribution as well as up-regulating SIRT1, SOD1 and GPX1 genes. Conclusions Taken together, our findings highlighted the beneficial influence exerted by Res in preventing Cd-induced disturbance of nuclear and cytoplasmic maturation and subsequent fertilization in ovine oocytes. Res treatment may help to establish defence strategies counteracting Cd-induced toxicity on the female gamete.
Collapse
Affiliation(s)
- Anna Rita Piras
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy
| | - Alessio Maltana
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy
| | | | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy.
| |
Collapse
|
17
|
Pan C, Chen J, Chen Y, Lu Y, Liang X, Xiong B, Lu Y. Mogroside V ameliorates the oxidative stress-induced meiotic defects in porcine oocytes in vitro. Reprod Toxicol 2022; 111:148-157. [PMID: 35597324 DOI: 10.1016/j.reprotox.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023]
Abstract
It has been reported that environmental factors, such as industrial pollution, environmental toxins, environmental hormones, and global warming contribute to the oxidative stress-induced deterioration of oocyte quality and female fertility. However, the prevention or improvement approaches have not been fully elucidated. Here, we explored the mechanism regarding how Mogroside V (MV), a main extract of Siraitia grosvenorii, improves the oxidative stress-induced meiotic defects in porcine oocytes. Our results showed that MV supplementation restores the defective oocyte maturation and cumulus cell expansion caused by H2O2 treatment. We further found that MV supplementation promoted the oocyte cytoplasmic maturation through preventing cortical granules from the aberrant distribution, and drove the nuclear maturation by maintaining the cytoskeleton structure. Notably, our single-cell RNA sequencing data indicated that H2O2-treated oocytes led to the oxidative stress primarily through two pathways 'meiosis' and 'oxidative phosphorylation'. Lastly, we evaluated the effects of MV supplementation on the mitochondrial distribution pattern and membrane potential in H2O2-treated oocytes, revealing that MV supplementation eliminated the excessive ROS induced by the mitochondrial abnormalities and consequently suppressed the apoptosis. In conclusion, our study demonstrates that MV supplementation is an effective approach to ameliorate the oxidative stress-induced meiotic defects via recovering the mitochondrial integrity in porcine oocytes.
Collapse
Affiliation(s)
- Chen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jingyue Chen
- State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
18
|
Jiao X, Liu N, Xu Y, Qiao H. Perfluorononanoic acid impedes mouse oocyte maturation by inducing mitochondrial dysfunction and oxidative stress. Reprod Toxicol 2021; 104:58-67. [PMID: 34246765 DOI: 10.1016/j.reprotox.2021.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Perfluorononanoic acid (PFNA), a member of PFAS, is frequently detected in human blood and tissues, even in follicular fluid of women. The exposure of PFNA, but not PFOA and PFOS, is positively correlated with miscarriage and increased time to pregnancy. Toxicological studies indicated that PFNA exposure is associated with immunotoxicity, hepatotoxicity, developmental toxicity, and reproductive toxicity in animals. However, there is little information regarding the toxic effects of PFNA on oocyte maturation. In this study, we investigated the toxic effects of PFNA exposure on mouse oocyte maturation in vitro. Our results showed that 600 μM PFNA significantly inhibited germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Our further study revealed that PFNA induced abnormal metaphase I (MI) spindle assembly, evidenced by malformed spindles and mislocalization of p-ERK1/2 in PFNA-treated oocytes. We also found that PFNA induced abnormal mitochondrial distribution and increased mitochondrial membrane potential. Consequently, PFNA increased reactive oxygen species (ROS) levels, leading to oxidative stress, DNA damage, and eventually early-stage apoptosis in oocytes. In addition, after 14 h culture, PFNA disrupted the formation of metaphase II (MII) spindle in most PFNA-treated oocytes with polar bodies. Collectively, our results indicate that PFNA interferes with oocyte maturation in vitro via disrupting spindle assembly, damaging mitochondrial functions, and inducing oxidative stress, DNA damage, and early-stage apoptosis.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Malott KF, Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod 2021; 104:784-793. [PMID: 33412584 PMCID: PMC8023417 DOI: 10.1093/biolre/ioab002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Oocyte mitochondria are unique organelles that establish a founder population in primordial germ cells (PGCs). As the oocyte matures in the postnatal mammalian ovary during folliculogenesis it increases exponentially in volume, and the oocyte mitochondria population proliferates to about 100 000 mitochondria per healthy, mature murine oocyte. The health of the mature oocyte and subsequent embryo is highly dependent on the oocyte mitochondria. Mitochondria are especially sensitive to toxic insults, as they are a major source of reactive oxygen species (ROS), they contain their own DNA (mtDNA) that is unprotected by histone proteins, they contain the electron transport chain that uses electron donors, including oxygen, to generate ATP, and they are important sensors for overall cellular stress. Here we review the effects that toxic insults including chemotherapeutics, toxic metals, plasticizers, pesticides, polycyclic aromatic hydrocarbons (PAHs), and ionizing radiation can have on oocyte mitochondria. This is very clearly a burgeoning field, as our understanding of oocyte mitochondria and metabolism is still relatively new, and we contend much more research is needed to understand the detrimental impacts of exposure to toxicants on oocyte mitochondria. Developing this field further can benefit our understanding of assisted reproductive technologies and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Kelli F Malott
- Department of Environmental and Occupational Health, University of California, Irvine, CA 92617, USA
- Department of Medicine, University of California, Irvine CA 92617, USA
| | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California, Irvine, CA 92617, USA
- Department of Medicine, University of California, Irvine CA 92617, USA
- Developmental and Cell Biology, University of California, Irvine CA 92617, USA
| |
Collapse
|
20
|
Zhao X, Li X, Wang S, Yang Z, Liu H, Xu S. Cadmium exposure induces mitochondrial pathway apoptosis in swine myocardium through xenobiotic receptors-mediated CYP450s activation. J Inorg Biochem 2021; 217:111361. [PMID: 33581611 DOI: 10.1016/j.jinorgbio.2021.111361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) pollution has become an important public and environmental health issue. Xenobiotic receptors (XRs, aryl hydrocarbon receptor, AHR; constitutive androstane receptor, CAR; pregnane X receptor, PXR) modulate downstream cytochrome P450 enzymes (CYP450s) expression to metabolize xenobiotics and environmental contaminants. However, the underlying mechanisms of cardiotoxicity induced by Cd(II) in swine and the roles of XRs and CYP450s remain poorly understood. In this study, the cardiotoxicity of Cd(II) was investigated by establishing a Cd(II)-exposed swine model (CdCl2, 20 mg Cd/Kg diet). Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay and transmission electron microscope were used to observe the apoptosis. Antioxidant capacity was evaluated by free radicals contents and antioxidant enzymes activities. RT-PCR and western blot were used to measure the expression of XRs, CYP450s and apoptosis-related genes. Our results revealed that Cd(II) exposure activated the XRs and increased the CYP450s expression, contributing to the production of reactive oxygen species (ROS). Cd(II) exposure restrained the antioxidant capacity, causing oxidative stress. Moreover, mitogen-activated protein kinase (MAPK) pathway including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38) was activated, triggering the mitochondrial apoptotic pathway. In brief, we concluded that Cd(II) caused mitochondrial pathway apoptosis in swine myocardium via the oxidative stress-MAPK pathway, and XRs-mediated CYP450s expression might participate in this process through promoting the ROS.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|