1
|
Manthattil Vysyan S, Suraj Prasanna M, Jayanandan A, Gangadharan AK, Chittalakkottu S. Phytocompounds hesperidin, rebaudioside a and rutin as drug leads for the treatment of tuberculosis targeting mycobacterial phosphoribosyl pyrophosphate synthetase. J Biomol Struct Dyn 2024:1-15. [PMID: 39659199 DOI: 10.1080/07391102.2024.2438363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/29/2024] [Indexed: 12/12/2024]
Abstract
The main aim of this study is to address the global health crisis posed by tuberculosis (TB) through the exploration of novel therapeutic strategies targeting Mycobacterial phosphoribosyl pyrophosphate synthetase (MtPrsA), an untried enzyme involved in essential metabolic pathways of Mycobacterium tuberculosis. This enzyme plays a crucial role in cell wall synthesis, nucleotide biosynthesis and amino acid synthesis in M tb. Any hindrance to these may affect the growth and survival of the organism. Phytochemicals were systematically screened for potential inhibitors to MtPrsA. Subsequently, based on molecular docking studies, three compounds, namely, hesperidin, rebaudiosideA and rutin were selected. The binding stabilities of these compounds were analyzed using molecular dynamics simulation. Based on the RMSD score obtained, the binding stability of the compounds was confirmed. To validate the findings, an enzyme inhibition assay was done using recombinant MtPrsA. Ligation Independent Cloning (LIC cloning) method was used to produce recombinant His-tagged MtPrsA, followed by purification using Histrap columns. Enzyme kinetic studies unveiled the distinct modes of inhibition exhibited by each compound towards MtPrsA. RebaudiosideA and rutin emerged as competitive inhibitors, while hesperidin showcased a mixed inhibition profile. In conclusion, the study contributes valuable insights into potential therapeutic strategies for TB, through the exploration of alternative enzyme targets and the identification of phytochemical inhibitors. Notably, todate, no effective plant compounds have been reported as inhibitors to MtPrsA.
Collapse
Affiliation(s)
| | - Meera Suraj Prasanna
- Department of Biotechnology & Microbiology, Kannur University, Thalassery, India
| | - Abhithaj Jayanandan
- Department of Biotechnology & Microbiology, Kannur University, Thalassery, India
| | | | | |
Collapse
|
2
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Sirotkin AV. Positive effects of rutin on female reproduction. Reprod Domest Anim 2024; 59:e14540. [PMID: 38404048 DOI: 10.1111/rda.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024]
Abstract
This article reviews the source and properties of rutin (vitamin P), its general physiological and medicinal effects and their mechanisms, but the main subject of it is the currently available knowledge concerning the character and mechanisms of action of rutin on female reproductive processes. The available data demonstrate the stimulatory action of rutin on female reproductive processes: it can promote ovarian follicles development and ovulation, ovarian cyclicity, and viability of ovarian cells. On the other hand, it can suppress ovarian cancer cell and tumour development by inhibition of cell proliferation and growth and activation of their apoptosis and death. Furthermore, it could be able to prevent other reproductive disorders (ischaemia, polycystic ovarian syndrome, toxic effects of chemotherapy, nanoparticles and toluene). Rutin could exert its effects via changes in the release and reception of gonadotropin, ovarian steroid hormones, prostaglandins, cytokines, VEGF, as well as in intracellular regulators and markers of oxidative and inflammatory processes, proliferation, apoptosis and angiogenesis.
Collapse
|
5
|
de Assis E, Azevedo V, de Lima M, Costa F, Paulino L, Barroso P, Matos M, do Monte A, Donato M, Peixoto C, Godinho A, Freire J, Souza A, Silva J, Silva A. Extract of Cimicifuga racemosa (L.) Nutt protects ovarian follicle reserve of mice against in vitro deleterious effects of dexamethasone. Braz J Med Biol Res 2023; 56:e12811. [PMID: 37792779 PMCID: PMC10515502 DOI: 10.1590/1414-431x2023e12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
The present study aims to investigate if Cimicifuga racemosa (L.) Nutt extract (CIMI) reduces deleterious effects of dexamethasone (DEXA) in ovaries cultured in vitro. Mouse ovaries were collected and cultured in DMEM+ only or supplemented with 5 ng/mL of CIMI, or 4 ng/mL DEXA, or both CIMI and DEXA. The ovaries were cultured at 37.5°C in 5% CO2 for 6 days. Ovarian morphology, follicular ultrastructure, and the levels of mRNA for Bax, Bcl-2, and Caspase-3 were evaluated. The results showed that DEXA reduced the percentage of morphologically normal follicles, while CIMI prevented the deleterious effects caused by DEXA. In addition, DEXA negatively affected the stromal cellular density, while CIMI prevented these adverse effects. Ovaries cultured with DEXA and CIMI showed similar levels of mRNA for Bax, Bcl-2, and Caspase-3 compared to those cultured in control medium, while ovaries cultured with DEXA had increased expression of the above genes. Additionally, the ultrastructure of the ovaries cultured with CIMI was well preserved. Thus, the extract of CIMI was able to prevent the deleterious effects caused by DEXA on cultured mouse ovaries.
Collapse
Affiliation(s)
- E.I.T. de Assis
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - V.A.N. Azevedo
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.F. de Lima
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - F.C. Costa
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - L.R.F.M. Paulino
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - P.A.A. Barroso
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.H.T. Matos
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - A.P.O. do Monte
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - M.A.M. Donato
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - C.A. Peixoto
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - A.N. Godinho
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.M.O. Freire
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.L.P. Souza
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.R.V. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.W.B. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| |
Collapse
|
6
|
Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, Lin J. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis 2023; 14:340. [PMID: 37225709 DOI: 10.1038/s41419-023-05859-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Chemotherapy was conventionally applied to kill cancer cells, but regrettably, they also induce damage to normal cells with high-proliferative capacity resulting in cardiotoxicity, nephrotoxicity, peripheral nerve toxicity, and ovarian toxicity. Of these, chemotherapy-induced ovarian damages mainly include but are not limited to decreased ovarian reserve, infertility, and ovarian atrophy. Therefore, exploring the underlying mechanism of chemotherapeutic drug-induced ovarian damage will pave the way to develop fertility-protective adjuvants for female patients during conventional cancer treatment. Herein, we firstly confirmed the abnormal gonadal hormone levels in patients who received chemotherapy and further found that conventional chemotherapeutic drugs (cyclophosphamide, CTX; paclitaxel, Tax; doxorubicin, Dox and cisplatin, Cis) treatment significantly decreased both the ovarian volume of mice and the number of primordial and antral follicles and accompanied with the ovarian fibrosis and reduced ovarian reserve in animal models. Subsequently, Tax, Dox, and Cis treatment can induce the apoptosis of ovarian granulosa cells (GCs), likely resulting from excessive reactive oxygen species (ROS) production-induced oxidative damage and impaired cellular anti-oxidative capacity. Thirdly, the following experiments demonstrated that Cis treatment could induce mitochondrial dysfunction through overproducing superoxide in GCs and trigger lipid peroxidation leading to ferroptosis, first reported in chemotherapy-induced ovarian damage. In addition, N-acetylcysteine (NAC) treatment could alleviate the Cis-induced toxicity in GCs by downregulating cellular ROS levels and enhancing the anti-oxidative capacity (promoting the expression of glutathione peroxidase, GPX4; nuclear factor erythroid 2-related factor 2, Nrf2 and heme oxygenase-1, HO-1). Our study confirmed the chemotherapy-induced chaotic hormonal state and ovarian damage in preclinical and clinical examination and indicated that chemotherapeutic drugs initiated ferroptosis in ovarian cells through excessive ROS-induced lipid peroxidation and mitochondrial dysfunction, leading to ovarian cell death. Consequently, developing fertility protectants from the chemotherapy-induced oxidative stress and ferroptosis perspective will ameliorate ovarian damage and further improve the life quality of cancer patients.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Qin Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengyuan Chang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Badrul Hisham Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
7
|
Bioactive Compounds (BACs): A Novel Approach to Treat and Prevent Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101664. [PMID: 36841315 DOI: 10.1016/j.cpcardiol.2023.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardioprotective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.
Collapse
|
8
|
Protective Effect of Cimicifuga racemosa (L.) Nutt Extract on Oocyte and Follicle Toxicity Induced by Doxorubicin during In Vitro Culture of Mice Ovaries. Animals (Basel) 2022; 13:ani13010018. [PMID: 36611626 PMCID: PMC9817952 DOI: 10.3390/ani13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the potential of Cimicifuga racemosa (L.) Nutt extract (CIMI) to reduce the deleterious effects of doxorubicin (DOXO) in oocytes, follicles and stromal cells in mice ovaries cultured in vitro. In experiment 1, mice ovaries were cultured in DMEM+ alone or supplemented with 5, 50 or 500 ng/mL CIMI, while in experiment 2, mice ovaries were cultured in DMEM+ alone or supplemented with 5 ng/mL CIMI (better concentration), 0.3 μg/mL DOXO or both. Thereafter, the ovaries were processed for histological (morphology, growth, activation, extracellular matrix configuration and stromal cell density), immunohistochemical (caspase-3) analyses. Follicle viability was evaluated by fluorescence microscopy (ethidium homodimer-1 and calcein) while real-time PCR was performed to analyses the levels of (mRNA for SOD, CAT and nuclear factor erythroid 2-related factor 2 (NRF2) analyses. The results showed that DOXO reduces the percentage of normal follicles and the density of stromal cells in cultured ovaries, but these harmful effects were blocked by CIMI. The DOXO reduced the percentage of primordial follicles, while the presence of CIMI alone did not influence percentage of primordial follicles. A higher staining for caspase-3 was seen in ovaries cultured in control medium alone or with DOXO when compared with those cultured with CIMI alone or both CIMI and DOXO. In addition, follicles from ovaries cultured with both CIMI and DOXO were stained by calcein, while those follicles cultured with only DOXO were stained with ethidium homodimer-1. Furthermore, ovaries cultured with CIMI or both CIMI and DOXO had higher levels of mRNA for SOD and CAT, respectively, than those cultured with only DOXO. In conclusion, the extract of CIMI protects the ovaries against deleterious effects of DOXO on follicular survival and ovarian stromal cells.
Collapse
|
9
|
Al-Shahat A, Hulail MAE, Soliman NMM, Khamis T, Fericean LM, Arisha AH, Moawad RS. Melatonin Mitigates Cisplatin-Induced Ovarian Dysfunction via Altering Steroidogenesis, Inflammation, Apoptosis, Oxidative Stress, and PTEN/PI3K/Akt/mTOR/AMPK Signaling Pathway in Female Rats. Pharmaceutics 2022; 14:2769. [PMID: 36559263 PMCID: PMC9786155 DOI: 10.3390/pharmaceutics14122769] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian damage and fertility impairment are major side effects of chemotherapy in pre-menopausal cancer patients. Cisplatin is a widely used chemotherapeutic drug. The present study was designed to assess the ameliorative effects of melatonin as an adjuvant for fertility preservation. Thirty-two adult female Wistar rats were divided randomly into four equal groups: Control, Melatonin, Cisplatin (CP) treated, and CP + Melatonin treated. The cisplatin-treated group showed decreased body and ovarian weights, decreased serum E2 and AMH, increased serum LH and FSH, reduced ovarian levels of SOD, CAT, GSH, and TAC, and increased ovarian MDA. The histopathological examination of the cisplatin-treated group showed deleterious changes within ovarian tissue in the form of damaged follicles and corpus luteum, hemorrhage, and inflammatory infiltrates with faint PAS reaction in zona pellucida, increased ovarian collagen deposition, and marked expression of caspase-3 immune reaction in granulosa and theca cells, stroma, and oocytes. Alongside, there was a significant downregulation in the mRNA expression of steroidogenic enzymes, IL10, AMPK, PI3K, AKT, mTOR, and PTEN, while TGF-β1, IL1β, IL6, TNF-α, NF-Kβ, P53, p38-MAPK, JNK, and FOXO3 mRNA expressions were upregulated in cisplatin-treated rats' ovarian tissue. Coadministration of cisplatin-treated rats with melatonin reversed these changes significantly. In conclusion, melatonin's antioxidant, anti-inflammatory, and anti-apoptotic activities could modulate ovarian disturbances induced by cisplatin and preserve fertility.
Collapse
Affiliation(s)
- Amal Al-Shahat
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohey A. E. Hulail
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nada M. M. Soliman
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rania S. Moawad
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Barbosa L, Barberino R, Gouveia B, Menezes V, Palheta Junior R, Matos M. Protective effect of kaempferol against cisplatin-induced acute ovarian damage in a mouse model. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT The flavonoid kaempferol has attracted research attention as a potential adjuvant during chemotherapy. This study aimed to evaluate the protective effects of kaempferol against ovarian damage in cisplatin-treated mice. Two groups of mice received saline solution (intraperitoneal injection [i.p.]; control) or a single dose of cisplatin (5 mg/kg body weight, i.p.). Moreover, two other mice groups were pretreated with kaempferol (1 or 10 mg/kg body weight, i.p.) 30 min before of the cisplatin administration. Thereafter, their ovaries were harvested and subjected to histological (follicular morphology and activation) and fluorescence (reactive oxygen species [ROS] production, glutathione [GSH] concentration, and mitochondrial activity) analyses. Compared with cisplatin treatment alone, pretreatment with 1 mg/kg kaempferol maintained normal follicular morphology, reduced ROS production and mitochondrial damage, and enhanced GSH concentration. However, pretreatment with 10 mg/kg kaempferol did not prevent cisplatin-induced damage. The rate of primordial follicle activation was greater in mice pretreated with 1 mg/kg kaempferol than in the other treatment groups. In conclusion, pretreatment with 1 mg/kg kaempferol prevents cisplatin-induced ovarian damage and stimulates primordial follicle activation in mice.
Collapse
Affiliation(s)
| | | | - B.B. Gouveia
- Universidade Federal do Vale do São Francisco, Brazil
| | - V.G. Menezes
- Universidade Federal do Vale do São Francisco, Brazil
| | | | - M.H.T. Matos
- Universidade Federal do Vale do São Francisco, Brazil
| |
Collapse
|
11
|
Chi YN, Yang JM, Liu N, Cui YH, Ma L, Lan XB, Ma WQ, Liu YJ, Yu JQ, Du J. Development of protective agents against ovarian injury caused by chemotherapeutic drugs. Biomed Pharmacother 2022; 155:113731. [PMID: 36179491 DOI: 10.1016/j.biopha.2022.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the causes of ovarian injury and infertility. Although assisted reproductive technology helps young female patients with cancer become pregnant, preventing chemotherapy-induced ovarian injury will often possess even more significant benefits. OBJECTIVE We aimed at demonstrating the hazardous effects and mechanisms of ovarian injury by chemotherapeutic agents, as well as demonstrating agents that protect the ovary from chemotherapy-induced injury. RESULTS Chemotherapeutic agents cause death or accelerate activation of follicles and damage to the blood vessels in the ovary, resulting in inflammation. These often require drug development to protect the ovaries from injury. CONCLUSIONS Our findings provide a basis for the development of drugs to protect the ovaries from injury. Although there are many preclinical studies on potential protective drugs, there is still an urgent need for a large number of clinical experiments to verify their potential use.
Collapse
Affiliation(s)
- Yan-Nan Chi
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Key Laboratory of Hui Ethnic Medicine Modernization, the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Hong Cui
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wen-Qian Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Jie Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
12
|
Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022; 15:100. [PMID: 36050696 PMCID: PMC9434839 DOI: 10.1186/s13048-022-01032-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and investigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. This review provides a rationale for antioxidant therapy to improve ovarian aging.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhibo Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinliang Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chang Shu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Rodrigues TD, Lima KR, Uggioni MLR, Ferraz SD, Cardoso HS, Colonetti T, da Rosa MI. Effectiveness of Melatonin Adjuvant Treatment in Cisplatin to Prevent Depletion of Ovarian Follicles in Mice: Systematic Review. Biol Reprod 2022; 107:1386-1394. [PMID: 35980799 DOI: 10.1093/biolre/ioac164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION Cisplatin-based chemotherapy is the standard cancer therapy, however, this treatment causes depletion of ovarian follicles in women of reproductive age. Adjuvant treatment with melatonin can protect the ovaries from oxidative stress, reducing the side effects of chemotherapy. The objective was to evaluate the effects of the use of melatonin on the ovarian follicles of mice treated with cisplatin. METHODOLOGY A systematic review was performed. The search strategy used the terms: "cisplatin", "melatonin" and "ovarian". MEDLINE EMBASE, Cochrane Library, and grey literature (Google Scholar) were used as databases. The search was limited to experimental studies, performed on animals, with no language restrictions. RESULTS The search identified 30 studies and five primary studies, published between 2016 and 2021, met the inclusion criteria, with a total of 115 mice. For the p-FOX3a / FOXO3a pathway, the meta-analysis showed an SMD of -4.79 (95% CI -6.16 to -3.42; p<0.00001, two studies, 38 mice; I2 = 0%). For the p-PTEN pathway, the meta-analysis showed a standard mean difference (SMD) of -1.65 (95% CI -2.71 to -0.59; p = 0.002, two studies, 38 mice; I2 = 47%). CONCLUSION Melatonin variation in efficacy varies according to the dose used in mice previously exposed to cisplatin. However, melatonin was able to alter the p-PTEN and p-FOX3a / FOXO3a pathways.
Collapse
Affiliation(s)
- Tairini Damiani Rodrigues
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Kellen R Lima
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maria Laura R Uggioni
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Sarah Dagostin Ferraz
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Hemmylly Silveira Cardoso
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tamy Colonetti
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maria Inês da Rosa
- Laboratory of Translacional Biomedicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
14
|
Barberino RS, Lins TLBG, Monte APO, Silva RLS, Andrade KO, Campinho DSP, Palheta Junior RC, Smitz JEJ, Matos MHT. Epigallocatechin-3-gallate attenuates cyclophosphamide-induced damage in mouse ovarian tissue via suppressing inflammation, apoptosis, and expression of phosphorylated Akt, FOXO3a and rpS6. Reprod Toxicol 2022; 113:42-51. [PMID: 35981663 DOI: 10.1016/j.reprotox.2022.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
This study was conducted to evaluate the protective effects of epigallocatechin-3-gallate (EGCG) against ovarian toxicity in cyclophosphamide-treated mice and to verify the possible involvement of phosphorylated Akt, FOXO3a and rpS6 in the EGCG actions. Mice received saline solution (i.p.; control) or a single dose of cyclophosphamide (200 mg/kg body weight, i.p.) or mice were pretreated with N-acetylcysteine (150 mg/kg body weight, i.p.; positive control) or with EGCG (5, 25 or 50 mg/kg body weight, i.p.) once daily for three days followed by injection with single dose of cyclophosphamide (200 mg/kg body weight, i.p.). Thereafter, the mice were euthanized, and the ovaries were harvested and destined to histological (follicular morphology and activation), immunohistochemistry (cleaved caspase-3 and TNF-α) and fluorescence (mitochondrial activity and GSH concentrations) analyses. Furthermore, we examined the participation of p-Akt, p-FOXO3a and p-rpS6 in the protective effects of EGCG in cyclophosphamide-induced ovarian damage by immunohistochemical staining. The results showed that pretreatment with N-acetylcysteine or EGCG at 25 and 50 mg/kg before cyclophosphamide administration preserved the normal follicular morphology, prevented primordial follicle loss, reduced atresia, inflammation, and mitochondrial damage, and increased GSH concentrations compared to the only cyclophosphamide treatment. Additionally, pretreatment with 25 mg/kg EGCG regulated phosphorylated Akt, FOXO3a and rpS6 after cyclophosphamide treatment. In conclusion, short-time pretreatment with 25 mg/kg EGCG can prevent follicle loss in cyclophosphamide-treated mice by reducing oxidative damage, inflammation, and apoptosis, and regulating of p-Akt, p-FOXO3a and p-rpS6.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil.
| | - Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| | - Kíscyla O Andrade
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| | - Daniela S P Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Free University Brussels - VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley - UNIVASF, Petrolina, Brazil
| |
Collapse
|
15
|
He's Yangchao Recipe Ameliorates Ovarian Oxidative Stress of Aging Mice under Consecutive Superovulation Involving JNK- And P53-Related Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7705194. [PMID: 35845588 PMCID: PMC9286969 DOI: 10.1155/2022/7705194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the effects of He's Yangchao Recipe (HSYC) on ameliorating ovarian oxidative stress of aging mice under consecutive superovulation. Methods An 8-month-old C57BL/6 female mouse was chosen to establish an aging model under ovarian hyperstimulation. Mice were randomly separated into four groups: R1 as the control group, R4 as the model group, NR4 with N-acetyl-L-cysteine (NAC) administration, and TR4 with HSYC administration. Oocyte collection, in vitro fertilization, and embryo culture were performed. The serum hormone levels were measured by enzyme-linked immunosorbent assays (ELISA); the reactive oxygen species (ROS) level of oocytes, the number of growing follicles, corpus luteum, ovulated oocytes, and developing embryos at each stage, along with the proportions of fragmented oocytes and abnormal mitochondria in granulosa cells (GCs) and the apoptosis rate of GCs were calculated; the mRNA and protein levels of JNK, P53, BAX were detected by real-time PCR and the Simple Western System. Results HSYC enhanced estradiol, progesterone, and inhibin-B levels and increased growing follicle and corpus luteum and ovulated egg counts compared to the R4 group (P < 0.05), whereas it decreased the proportions of fragmented oocytes (P < 0.01); Meanwhile, embryos from mice subjected to four superovulation cycles with HSYC treated had a higher hatching potential. The ROS level of oocytes is downregulated by HSYC (P < 0.01) and the percentage of abnormal mitochondrial in ovaries of the TR4 group was also significantly declined compared to the R4 group (P < 0.05); the most TUNEL-positive cells proportion was detected in the R4 group; nevertheless, HSYC effectively attenuated this detrimental effect (P < 0.05). The mRNA and protein expressions of JNK and P53 in ovary tissues were reduced in the TR4 group while these genes were upregulated by repeated superovulation (P < 0.05). Conclusions HSYC exerted promising effects on promoting the diminished ovarian reserve and decreased oocyte quality induced by both aging and consecutive ovarian superovulation, potentially via the ROS/JNK/p53 pathway.
Collapse
|
16
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
17
|
Meng XL, Yu MM, Liu YC, Gao YL, Chen XS, Shou ST, Chai YF. Rutin Inhibits Cardiac Apoptosis and Prevents Sepsis-Induced Cardiomyopathy. Front Physiol 2022; 13:834077. [PMID: 35492613 PMCID: PMC9050354 DOI: 10.3389/fphys.2022.834077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Rutin is a flavanol-type polyphenol that consists of flavanol quercetin and the disaccharide rutinose, which has been reported to exert various biological effects such as antioxidant and anti-inflammatory activities. It is not clear whether rutin has a protective effect on sepsis-induced cardiomyopathy (SIC). In this study, we used male C57BL/6 mice and cecal ligation and puncture (CLP) surgery to establish the model of SIC. Rutin was precautionarily treated (50, 100, 200 mg/kg per day, 7 days) before CLP. The results showed that rutin pretreatment (100, 200 mg/kg per day, 7 days) reduced the mortality of murine sepsis. We chose the 100 mg/kg dose for further studies. Mice were pretreatment with rutin (100 mg/kg per day, 7 days) before subjected to CLP, and myocardial tissue and blood samples were collected 24 h after CLP. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cTNT decreased, while interleukin-10 (IL-10) increased with rutin pretreatment. The cardiomyocytes apoptosis and mitochondrial dysfunction were also alleviated with rutin pretreatment. In conclusion, this study confirmed the efficacy of rutin-enriched diet in the prophylaxis of cardiac apoptosis and cardiac injury induced by CLP in mouse model. It provides a potential new approach on SIC prophylaxis in sepsis.
Collapse
Affiliation(s)
| | | | - Yan-Cun Liu
- *Correspondence: Yan-Cun Liu, ; Yan-Fen Chai,
| | | | | | | | | |
Collapse
|
18
|
Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction. Pharmaceuticals (Basel) 2022; 15:ph15020239. [PMID: 35215351 PMCID: PMC8877800 DOI: 10.3390/ph15020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The present review summarizes the current knowledge concerning provenance, properties, physiological and therapeutic actions of elderberry and the bioactive molecules present in the plant, with emphasis on their action on female reproduction. Elderberry or black elder (Sambucus nigra L.) attracts attention due to its easy cultivation and high availability of bioactive compounds. Most of the available data concerning black elder’s therapeutic action are focused on its effects such as activation of immune processes and anti-inflammatory processes (cytokine production, etc.) and regulation of hormones and their receptors in cancer cells. The effects of elderberry on reproduction have been poorly investigated so far. Nevertheless, conducted studies so far demonstrate the stimulatory influence of black elder extract and its constituents, such as rutin, anthocyanins and agglutinins, on the viability and steroidogenesis of healthy ovarian cells as well as their ability to promote apoptosis and reduce the viability and proliferation of ovarian cancer cells. Furthermore, the action of black elder extract and its constituent biomolecules, such as anthocyanins and lectins, on embryogenesis and the embryonal estradiol-estradiol receptor system have also been reported. The available information, despite limitations, suggest the applicability of black elder constituents for improvement of reproductive processes in animal biotechnology, animal production and assisted reproduction, as well as for prevention and treatment of reproductive disorders (including cancer) in veterinary and human medicine.
Collapse
|
20
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular and metabolic diseases are a leading cause of death worldwide. Epidemiological studies strongly highlight various benefits of consuming colorful fruits and vegetables in everyday life. In this review, we aimed to revisit previous studies conducted in the last few decades regarding green-colored foods and their bioactive compounds in consideration of treating and/or preventing cardiovascular and metabolic diseases. This review draws a comprehensive summary and assessment of research on the physiological effects of various bioactive compounds, mainly polyphenols, derived from green-colored fruits and vegetables. In particular, their health-beneficial effects, including antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, cardioprotective, and lipid-lowering properties, will be discussed. Furthermore, the bioavailability and significance of action of these bioactive compounds on cardiovascular and metabolic diseases will be discussed in detail.
Collapse
|
21
|
Yang L, Kang Y, Liu J, Li N, Sun H, Ao T, Chen W. Foliar spray with rutin improves cadmium remediation efficiency excellently by enhancing antioxidation and phytochelatin detoxification of Amaranthus hypochondriacus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1060-1070. [PMID: 34779332 DOI: 10.1080/15226514.2021.1999902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rutin is a flavonoid with strong antioxidative effects on plant metabolism that facilitates resistance to environmental stress. The effect of foliar rutin on cadmium (Cd) uptake in Amaranthus hypochondriacus (K472) was studied. The results showed that a foliar spray of rutin alleviated Cd toxicity, promoted plant growth, improved Cd transfer to and storage in aerial plant parts and Cd accumulation with positive effects over time. A rutin concentration of 1.5 mg/mL showed the strongest promotion effect: the biomass and Cd content were increased at 13 days by 68.62% and 405.54% compared to 3 days, respectively, whereas a high concentration of rutin (5 mg/mL) inhibited plant growth and hindered Cd absorption. Two stages of Cd detoxification were identified in K472 after appropriate rutin application. First, an antioxidant system including an enzymatic antioxidant (superoxide dismutase [SOD]) and nonenzymatic antioxidants (glutathione [GSH] and flavonoids) was activated to enhance plant stress resistance. Quercetin and phytochelatin (PC) synthesis were then enhanced to perform detoxification synergistically with the antioxidant system to improve stress tolerance and achieve stable Cd detoxification. The results demonstrated that appropriately prolonging the application time of exogenous rutin to K472 is an effective way to improve the Cd remediation efficiency.
Collapse
Affiliation(s)
- Li Yang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yuchen Kang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Jiaxin Liu
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Pandey P, Khan F, Qari HA, Oves M. Rutin (Bioflavonoid) as Cell Signaling Pathway Modulator: Prospects in Treatment and Chemoprevention. Pharmaceuticals (Basel) 2021; 14:1069. [PMID: 34832851 PMCID: PMC8621917 DOI: 10.3390/ph14111069] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex ailment orchestrated by numerous intrinsic and extrinsic pathways. Recent research has displayed a deep interest in developing plant-based cancer therapeutics for better management of the disease and limited side effects. A wide range of plant-derived compounds have been reported for their anticancer potential in the quest of finding an effective therapeutic approach. Rutin (vitamin P) is a low-molecular weight flavonoid glycoside (polyphenolic compound), abundantly present in various vegetables, fruits (especially berries and citrus fruits), and medicinal herbs. Numerous studies have delineated several pharmacological properties of rutin such as its antiprotozoal, antibacterial, anti-inflammatory, antitumor, antiviral, antiallergic, vasoactive, cytoprotective, antispasmodic, hypolipidemic, antihypertensive, and antiplatelet properties. Specifically, rutin-mediated anticancerous activities have been reported in several cancerous cell lines, but the most common scientific evidence, encompassing several molecular processes and interactions, including apoptosis pathway regulation, aberrant cell signaling pathways, and oncogenic genes, has not been thoroughly studied. In this direction, we attempted to project rutin-mediated oncogenic pathway regulation in various carcinomas. Additionally, we also incorporated advanced research that has uncovered the notable potential of rutin in the modulation of several key cellular functions via interaction with mRNAs, with major emphasis on elucidating direct miRNA targets of rutin as well as the process needed to transform these approaches for developing novel therapeutic interventions for the treatment of several cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Melatonin Attenuates Cyclophosphamide-Induced Primordial Follicle Loss by Interaction with MT 1 Receptor and Modulation of PTEN/Akt/FOXO3a Proteins in the Mouse Ovary. Reprod Sci 2021; 29:2505-2514. [PMID: 34642909 DOI: 10.1007/s43032-021-00768-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
This study evaluated the protective effect of melatonin before cyclophosphamide administration on ovarian function and its potential mechanism in a mouse model. Two studies were performed. In the first, mice were pretreated with melatonin (10, 20, or 30 mg/kg body weight, i.p.) once daily for 3 days, followed by injection with a single dose of cyclophosphamide (200 mg/kg body weight, i.p.) 30 min after the last melatonin injection. The second study analyzed whether melatonin type 1 and/or 2 receptors mediate the effects of melatonin on the ovary through administration of non-selective MT1/MT2 antagonist (luzindole) or selective MT2 antagonist (4-PPDOT) before the treatment with melatonin plus cyclophosphamide. After treatment groups, the ovaries were harvested and destined to histology, immunohistochemistry, and fluorescence analyses. Lastly, we examined the p-PTEN, p-Akt, and p-FOXO3a participation in the protective effect of melatonin in cyclophosphamide-induced ovarian damage. Results demonstrated that pretreatment with 20 mg/kg melatonin before cyclophosphamide administration showed more morphologically normal follicles, attenuated primordial follicle loss, decreased growing follicle atresia and mitochondrial damage, and increased GSH concentrations. Furthermore, treatment with luzindole blocked the protective effects of melatonin against the damage caused by cyclophosphamide. Additionally, pretreatment with 20 mg/kg melatonin regulated the PTEN/Akt/FOXO3a signaling pathway components after cyclophosphamide treatment. In conclusion, pretreatment with 20 mg/kg melatonin prevented primordial follicle loss and reduced apoptosis and oxidative damage in the mouse ovary during experimental chemotherapy with cyclophosphamide. Furthermore, the MT1 receptor and PTEN/Akt/FOXO3a proteins mediated these cytoprotective effects.
Collapse
|
24
|
Mahomoodally MF, Zengin G, Sinan KI, Ak G, Sadeer NB, Angeloni S, Mustafa AM, Caprioli G, Maggi F, Cakilcioglu U, Kaplan A, Babacan EY, Bouyahya A, Darendelioglu E. Two Medicinal Plants (Alkanna trichophila and Convolvulus galaticus) from Turkey: Chemical Characterization and Biological Perspectives. Chem Biodivers 2021; 18:e2100356. [PMID: 34398524 DOI: 10.1002/cbdv.202100356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023]
Abstract
The aim of the present study was to quantify selected phenolic compounds, determine antioxidant activity and enzyme inhibitory effects of the aerial parts of Alkanna trichophylla Hub.-Mor. (A. trichophylla) and Convolvulus galaticus Rost.ex Choisy (C. galaticus) extracts prepared by homogenizer-assisted extraction (HAE), maceration (MAC) and infusion techniques. This is the first time such study has been designed to validate the phytochemical composition and bioactivity of these plants. Multivariate analysis was conducted on collected data. Rutin and caffeoylquinic acid derivatives were the most significant compounds in A. trichophylla and C. galaticus, respectively. The highest antioxidant activity of A. trichophylla was mostly exhibited by HAE/methanolic extracts as determined by DPPH, ABTS, FRAP (51.39, 112.70 and 145.73 mg TE/g, respectively) and phosphomolybdenum (2.05 mmol TE/g) assays. However, significant antioxidant activities varied within the extracts of C. galaticus. HAE/methanolic extract of A. trichophylla significantly depressed AChE (2.70 mg GALAE/g), BChE (5.53 mg GALAE/g) and tyrosinase (26.34 mg KAE/g) activities and that of C. galaticus inhibited AChE (2.04 mg GALAE/g), tyrosinase (31.25 mg KAE/g) and α-amylase (0.53 mmol ACAE/g) activities significantly. We concluded that HAE was the most efficient extraction technique as high yield of compounds and promising bioactivities were recorded from extracts prepared. Multivariate analysis showed that types of solvents influenced recovery of compounds and biological activities. This research study can be used as one methodological starting point for further investigation on these plants as all results are clearly promising and open the door to further research challenges such as cytotoxicity evaluation, molecular docking analysis, and more screening of pharmacological actions.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130, Konya, Turkey
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130, Konya, Turkey
| | - Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130, Konya, Turkey
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, I-62032, Camerino (MC), Italy.,RICH - Research and Innovation Coffee Hub, via E. Betti 1, I-62020, Belforte del Chienti (MC), Italy
| | - Ahmed M Mustafa
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, I-62032, Camerino (MC), Italy.,Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, I-62032, Camerino (MC), Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, I-62032, Camerino (MC), Italy
| | - Ugur Cakilcioglu
- Munzur University, Pertek Sakine Genç Vocational School, Tunceli, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, 7209, Batman, Turkey
| | - Ebru Yuce Babacan
- Munzur University, Pertek Sakine Genç Vocational School, Tunceli, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000, Bingol, Turkey
| |
Collapse
|
25
|
Lins TLBG, Barberino RS, Monte APO, Pinto JGC, Campinho DSP, Palheta RC, Matos MHT. Rutin promotes activation and reduces apoptosis of primordial follicles by regulating Akt phosphorylation after in vitro culture of ovine ovarian tissue. Theriogenology 2021; 173:64-72. [PMID: 34339905 DOI: 10.1016/j.theriogenology.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/09/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
The aims of this study were to analyze the effects of different concentrations of rutin on primordial follicle survival and development after in vitro culture of sheep ovarian tissue, and to verify the possible involvement of the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway in the rutin actions. Ovarian fragments were fixed for histological analysis (fresh control) or cultured in α-minimum essential medium alone (α-MEM+: control medium) or in α-MEM+supplemented with different concentrations of rutin (0.1; 1 or 10 μg/mL) for 7 days. Inhibition of the PI3K activity was performed in fragments cultured with 50 μM LY294002. Thereafter, immunohistochemistry was performed to evaluate the expression of cleaved caspase-3 (apoptosis) and Akt phosphorylation (p-Akt). The results showed that 1 μg/mL rutin has a greater percentage of normal follicles (P < 0.05) than those of α-MEM+ and other rutin treatments. In addition, 1 μg/mL rutin maintained the follicular apoptosis similar (P > 0.05) to that of the fresh control and lower than α-MEM+ and 10 μg/mL rutin. All rutin concentrations increased (P < 0.05) follicular activation compared to fresh control and α-MEM+. Furthermore, follicular and oocyte diameters increased (P < 0.05) only after culture with 1 μg/mL rutin. After PI3K inhibition, there was a reduction (P < 0.05) of rutin follicular effects. In conclusion, rutin at 1 μg/mL reduces apoptosis, promotes activation and growth of sheep primordial follicles through the modulation of the PI3K/Akt signaling pathway after in vitro culture of ovine ovarian tissue.
Collapse
Affiliation(s)
- T L B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - R S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - A P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - J G C Pinto
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - D S P Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - R C Palheta
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - M H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil.
| |
Collapse
|
26
|
Liu H, Jiang C, La B, Cao M, Ning S, Zhou J, Yan Z, Li C, Cui Y, Ma X, Wang M, Chen L, Yu Y, Chen F, Zhang Y, Wu H, Liu J, Qin L. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res Ther 2021; 12:317. [PMID: 34078462 PMCID: PMC8173966 DOI: 10.1186/s13287-021-02382-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background Age-related diminished ovarian reserve (AR-DOR) reduced the quality of oocytes, resulting in decreased female fertility. Aging is tightly related to abnormal distribution and function of mitochondria, while mitophagy is a major process to maintain normal quality and quantity of mitochondria in cells, especially in oocytes which containing a large number of mitochondria to meet the demand of energy production during oocyte maturation and subsequent embryonic development. Ampk/FoxO3a signaling is crucial in the regulation of mitophagy. It is reported mesenchymal stem cells (MSCs) can improve ovarian function. Here we aim to explore if human amnion-derived mesenchymal stem cells (hAMSCs) are effective in improving ovarian function in AR-DOR mice and whether Ampk/FoxO3a signaling is involved. Methods The AR-DOR model mice were established by 32-week-old mice with 3–8 litters, significantly low serum sex hormone levels and follicle counts. The old mice were divided into 5 treatment groups: normal saline (NS, control), 1% human serum albumin (HSA, resolver), low dose (LD, 5.0 × 106cells/kg), middle dose (MD, 7.5 × 106cells/kg), and high dose (HD, 10.0 × 106cells/kg). The prepared hAMSCs were injected through tail vein. Serum sex hormone level, follicle counts, fertilization rate, gestation rate, little size, apoptosis of granulosa and stromal cells, expression level of Sod2, Ampk, and ratio of phosphorylated FoxO3a to total FoxO3a in ovaries were examined. Results Our results show that after hAMSC transplantation, the ovarian function in AR-DOR mice was significantly improved, meanwhile the apoptosis of granulosa and stromal cells in the ovaries was significantly repressed, the expression level of Ampk and the ratio of phosphorylated FoxO3a to total FoxO3a both were significantly increased, meanwhile increased Sod2 expression was also observed. Conclusion Our results demonstrate hAMSC transplantation via tail-injection can improve ovarian function of AR-DOR mice through Ampk/FoxO3a signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02382-x.
Collapse
Affiliation(s)
- Hanwen Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Boya La
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chuyu Li
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meilian Wang
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Li Chen
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Wu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|