1
|
Mueen H, Ahmad R, Khan SA, Shahzad M, Ismail AM, El-Beltagi HS, Hajjar MJ, Kesba HH. The ability of selected fungal strains to produce carboxylesterase enzymes for biodegradation and use of bifenthrin insecticide as carbon source: in vitro and in silico approaches. Bioprocess Biosyst Eng 2024; 47:1691-1705. [PMID: 39030281 DOI: 10.1007/s00449-024-03062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (μmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.
Collapse
Affiliation(s)
- Hasnat Mueen
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, P.O. Box 420, 31982, Al Hofuf, Saudi Arabia.
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, P.O. Box 420, 31982, Al Hofuf, Saudi Arabia.
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (A.R.C.), Giza, 12619, Egypt.
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Al Hofuf, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - M Jamal Hajjar
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, P.O. Box 420, 31982, Al Hofuf, Saudi Arabia
| | - Hosny Hamed Kesba
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, P.O. Box 420, 31982, Al Hofuf, Saudi Arabia
| |
Collapse
|
2
|
Jo JH, Uwamahoro C, Jang SI, Jung EJ, Lee WJ, Bae JW, Kim DH, Yi JK, Oh DY, Ha JJ, Kwon WS. Ethylene oxide suppresses boar sperm function during capacitation. Reprod Toxicol 2024; 129:108678. [PMID: 39068997 DOI: 10.1016/j.reprotox.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 μМ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.
Collapse
Affiliation(s)
- Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Dae-Hyun Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Koo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Dong Yep Oh
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
3
|
Uwamahoro C, Jo JH, Jang SI, Jung EJ, Lee WJ, Bae JW, Kwon WS. Assessing the Risks of Pesticide Exposure: Implications for Endocrine Disruption and Male Fertility. Int J Mol Sci 2024; 25:6945. [PMID: 39000054 PMCID: PMC11241045 DOI: 10.3390/ijms25136945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.
Collapse
Affiliation(s)
- Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
4
|
Akhigbe RE, Oyedokun PA, Akhigbe TM, Adenike S, Oladipo AA, Hughes JR. Does pyrethroid exposure lower human semen quality? a systematic review and meta-analysis. FRONTIERS IN TOXICOLOGY 2024; 6:1395010. [PMID: 38919453 PMCID: PMC11196980 DOI: 10.3389/ftox.2024.1395010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Background: Pyrethroids are natural organic compounds extracted from flowers of pyrethrums and commonly used as domestic and commercial insecticides. Although it is effective in insect and parasitic control, its associated toxicity, including spermotoxicity, remains a challenge globally. Currently, the available reports on the effect of pyrethroids on semen quality are conflicting, hence an evaluation of its detrimental effect is pertinent. This study conducts a detailed systematic review and meta-analysis of the effects of pyrethroids on sperm quality. Materials and methods: The present study was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using a pre-defined strategic protocol, an internet search was done using combined text words. The criteria for eligibility were selected based on Population, Exposure, Comparator, Outcome, and Study Designs (PECO) framework, and relevant data were collected. Appraisal was done using The Office of Health Assessment and Translation (OHAT) tool for the evaluation of the Risk of Bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group guidelines for the certainty of evidence. A quantitative meta-analysis was conducted with the Review Manager (RevMan). Results: Only 12 out of the 4, 050 studies screened were eligible for inclusion in this study. The eligible studies were from China (4), Japan (3), Poland (3), and United States (2). All the eligible studies were cross-sectional. A total of 2, 050 male subjects were included in the meta-analysis. Pyrethroid exposure significantly reduced sperm motility. Region-stratified subgroup analyses revealed that pyrethroid significantly reduced sperm motility among men in Poland and United States, and decreased sperm count among men in Japan. Pyrethroid exposure also reduced sperm concentration among men in Poland but increased sperm concentration among men in the United States. Conclusion: Although the study revealed inconsistent evidence on the detrimental effect of pyrethroids on semen quality, the findings showed that pyrethroids have deleterious potentials on sperm motility, count, and concentration. Studies focusing on the assessment of semen quality in pyrethroid-exposed men, especially at specific varying levels of exposure, and employing prospective cohort studies or controlled cross-sectional designs are recommended.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Precious Adeoye Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Nigeria
| | - Suliat Adenike
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Ayoola Abimbola Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | | |
Collapse
|
5
|
Lee WJ, Hwang JM, Jo JH, Jang SI, Jung EJ, Bae JW, Ha JJ, Kim DH, Kwon WS. Adverse Effects of Avobenzone on Boar Sperm Function: Disruption of Protein Kinase A Activity and Tyrosine Phosphorylation. Reprod Toxicol 2024; 125:108559. [PMID: 38378073 DOI: 10.1016/j.reprotox.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Avobenzone (AVO), an ultraviolet (UV) filter, is frequently used as an ingredient in personal cosmetics. This UV filter has been found to be easily exposed in swimming pools and beaches, and it has been detected in human urine and blood. Moreover, numerous studies have demonstrated that AVO exhibits endocrine-disrupting properties. Nevertheless, the effects of AVO on male fertility have not yet fully understood. Therefore, this study aimed to assess the effects of AVO on various sperm functions during capacitation. First, boar spermatozoa were treated with various AVO concentrations. After treatment, sperm motility and kinetic characteristics, capacitation status, intracellular adenosine triphosphate (ATP) levels, and sperm viability were evaluated. Moreover, Western blot analysis w.as conducted to evaluate protein kinase A (PKA) activity and tyrosine phosphorylation. As a result, AVO treatment significantly decreased total motility, progressive motility, and several kinetic characteristics at high concentrations (50 and 100 μM). Furthermore, the capacitation status dose-dependently decreased. Conversely, no significant differences in acrosome reaction, cell viability, and intracellular ATP levels were observed. However, the intracellular ATP level tended to decrease. In addition, AVO dose-dependently induced abnormal changes in PKA activity and tyrosine phosphorylation. Although AVO did not directly exert a toxic effect on cell viability, it ultimately negatively affected sperm functions through abnormal alterations in PKA activity and tyrosine phosphorylation. Thus, the potential implications on male fertility must be considered when contemplating the safe utilization of AVO.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do 36052, Republic of Korea
| | - Dae-Hyun Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
6
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Bae JW, Hwang JM, Yoon M, Kwon WS. Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm. TOXICS 2024; 12:53. [PMID: 38251009 PMCID: PMC10821346 DOI: 10.3390/toxics12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
A synthetic pyrethroid pesticide, bifenthrin, has been commonly used as an effective exterminator, although the rise in its usage has raised concerns regarding its effects on the environment and public health, including reproduction, globally. The current study investigated the function-related molecular disparities and mechanisms in bifenthrin-exposed sperm cells and the underlying mechanism. Therefore, epididymal spermatozoa were released, and various concentrations of bifenthrin were treated (0.1, 1, 10, and 100 μM) to evaluate their effects on sperm. The findings showed that although bifenthrin had no effect on sperm viability, various other sperm functions (e.g., motility, spontaneous acrosome reaction, and capacitation) related to male fertility were decreased, commencing at a 1 µM treatment. Molecular studies revealed nine differentially expressed sperm proteins that were implicated in motile cilium assembly, sperm structure, and metabolic processes. Furthermore, bifenthrin affected sperm functions through abnormal diminution of the expression of specific sperm proteins. Collectively, these findings provide greater insights into how bifenthrin affects male fertility at the molecular level.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
8
|
Jang SI, Jo JH, Jung EJ, Lee WJ, Hwang JM, Bae JW, Shin S, Lee SI, Kim MO, Kwon WS. Perfluorooctanoic acid suppresses sperm functions via abnormal Protein Kinase B activation during capacitation. Reprod Toxicol 2024; 123:108528. [PMID: 38145882 DOI: 10.1016/j.reprotox.2023.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a perfluorinated compound, a synthesized chemical, and has been used in several industrial products for more than 70 years. Although PFOA is known to exert toxic effects in normal cells, there is no detailed information on its reproductive toxicity and its effects on sperm functions related to protein kinase B (AKT). Therefore, this study was conducted to explore the effects of PFOA on sperm functions via AKT. Boar spermatozoa were incubated with different concentrations of PFOA (0, 0.1, 1, 10, and 100 μM) to induce capacitation. Sperm functions (sperm motility, motion kinematic parameters, capacitation status, cell viability, and intracellular ATP levels) were evaluated. In addition, the expression levels of AKT, phospho-AKT, phospho-PKA, and tyrosine phosphorylated proteins were evaluated by western blotting. Results showed significant decreases in sperm motility and motion kinematic parameters. PFOA treatment significant suppressed spermatozoa capacitation and intracellular ATP levels. Furthermore, it significantly decreased the levels of phospho-PKA and tyrosine phosphorylated proteins. The levels of AKT phosphorylation at Thr308 and Ser473 also significantly decreased. These findings suggest that PFOA diminishes sperm functions during capacitation and induces unnatural phosphorylation in AKT, leading to reproductive toxicity. Therefore, people should be aware of reproductive toxicity when using PFOA.
Collapse
Affiliation(s)
- Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
9
|
Kumar A, Jasrotia S, Dutta J, Kyzas GZ. Pyrethroids toxicity in vertebrates and invertebrates and amelioration by bioactive compounds: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105615. [PMID: 37945252 DOI: 10.1016/j.pestbp.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Generations of different synthetic pesticides have been launched over time to maintain balance between production and consumption of the agricultural yield, control various disease programmes, store grains, etc. Pyrethroids, which are supposed to be non-toxic, have been excessively implemented and have contaminated soil and water bodies. Thus, pyrethroids cause severe and dreadful pernicious effects on various life forms residing in soil, air, and water. Various obnoxious effects of pyrethroids have been analyzed in the vertebrate and invertebrate systems of the animal kingdom. Pyrethroids, namely, Cypermethrin, Deltamethrin, Beta-cyfluthrin, Esfenvalerate, Fenvalerate, and Bifenthrin, have set out various types of degenerative and toxic impacts that include oxidative stress, hepatotoxicity, immunotoxicity involving thymic and splenic toxicity, neurotoxicity, nephrotoxicity, foetal toxicity, alterations in serum calcium and phosphate levels, cerebral and bone marrow degeneration, degeneration of the reproductive system, histological alteration, and DNA damage. Bioactive compounds like Diosmin, Curcumin, Rutin, Spirulina platensis, sesame oil, Naringin, Allicin, Piperine, alpha-lipoic acid, alpha-tocopherol, Cyperus rotundus L. tuber extract, herbal syrup from chicory and artichoke leaves, green tea extract, Quercetin, Trans-ferulic acid, Ascorbic acid, Propolis, ethanolic extract of grape pomace, and Melatonin have been reported to sublime the toxic effects of these pesticides. The expanding harmfulness of pesticides is a real and demanding issue that needs to be overcome, and bioactive compounds have been shown to reduce the toxicity in vivo as well as in vitro.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| | - Shailja Jasrotia
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| |
Collapse
|
10
|
Jung EJ, Lee WJ, Hwang JM, Bae JW, Kwon WS. Reproductive Toxicity of Ritonavir in Male: insight into mouse sperm capacitation. Reprod Toxicol 2022; 114:1-6. [PMID: 36198369 PMCID: PMC9527077 DOI: 10.1016/j.reprotox.2022.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Since COVID-19 began in 2019, therapeutic agents are being developed for its treatment. Among the numerous potential therapeutic agents, ritonavir (RTV), an anti-viral agent, has recently been identified as an important element of the COVID-19 treatment. Moreover, RTV has also been applied in the drug repurposing of cancer cells. However, previous studies have shown that RTV has toxic effects on various cell types. In addition, RTV regulates AKT phosphorylation within cancer cells, and AKT is known to control sperm functions (motility, capacitation, and so on). Although deleterious effects of RTV have been reported, it is not known whether RTV has male reproduction toxicity. Therefore, in this study, we aimed to investigate the effects of RTV on sperm function and male fertility. In the present study, sperm collected from the cauda epididymis of mice were incubated with various concentrations of RTV (0, 0.1, 1, 10, and 100 μM). The expression levels of AKT, phospho-AKT (Thr308 and Ser473), and phospho-tyrosine proteins, sperm motility, motion kinematics, capacitation status, and cell viability were assessed after capacitation. The results revealed that AKT phosphorylation at Thr308 and Ser473 was significantly increased, and the levels of tyrosine-phosphorylated proteins (at approximately 25 and 100 kDa) were significantly increased in a dose-dependent manner. In addition, RTV adversely affected sperm motility, motion kinematics, and cell viability. Taken together, RTV may have negative effects on sperm function through an abnormal increase in tyrosine phosphorylation and phospho-AKT levels. Therefore, individuals taking or prescribing RTV should be aware of its reproductive toxicity.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
11
|
Leibovich-Raveh T, Gish M. Does Insect Aversion Lead to Increased Household Pesticide Use? INSECTS 2022; 13:555. [PMID: 35735892 PMCID: PMC9224736 DOI: 10.3390/insects13060555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
In many human societies, domestic insect pests often evoke feelings of disgust, fear and aversion. These common feelings may translate to increased use of household pesticides. No study has ever explored this possibility and consequently, efforts to mitigate public exposure to domestic pesticides typically focus on addressing knowledge gaps. We tested the hypothesis that negative emotions toward insects may motivate people to use pesticides, by interviewing 70 participants and assessing their insect aversion levels using a computerized test. Contrary to our hypothesis, we found no effect of insect aversion on pesticide use. However, we did find that personal attributes and preferences such as wishing to avoid exposure to toxic chemicals, being vegetarian and taking frequent nature walks reduced pesticide use, in addition to low infestation levels and physical attributes of the housing unit. We emphasize the importance of conducting future studies in various societies, where insect aversion and other factors may have different effects on household pesticide use. Such studies may provide culture-specific insights that could foster the development of next-generation urban IPM (Integrated Pest Management) public education programs, which will address not only knowledge gaps, but also emotional aspects and personal attributes that lead to unnecessary or excessive use of household pesticides.
Collapse
Affiliation(s)
- Tali Leibovich-Raveh
- Department of Mathematics Education, Faculty of Education, University of Haifa, Haifa 3498838, Israel;
| | - Moshe Gish
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
12
|
Hwang JM, Bae JW, Jung EJ, Lee WJ, Kwon WS. Novaluron Has Detrimental Effects on Sperm Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010061. [PMID: 35010320 PMCID: PMC8751217 DOI: 10.3390/ijerph19010061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/16/2023]
Abstract
Although novaluron is an insect growth regulator with a low mammalian acute toxicity and a low risk to the environment and nontarget organisms, toxic effects of novaluron have been reported. However, no studies have yet evaluated the effect of novaluron on reproduction. Therefore, we examined the effects of novaluron on sperm functions. The spermatozoa of ICR mice were incubated with various concentrations of novaluron to induce capacitation. Then, sperm motion parameters and capacitation status were evaluated using CASA program and H33258/chlortetracycline staining. In addition, PKA activity and tyrosine phosphorylation were evaluated by Western blotting. After exposure, various sperm motion parameters were significantly decreased in a dose-dependent manner. The acrosome reaction was also significantly decreased in the high concentration groups. Sperm viability was significantly reduced at the highest concentration. In addition, PKA activity and tyrosine phosphorylation were also significantly altered. Thus, novaluron affects sperm viability, sperm motility, and motion kinematics during capacitation. Furthermore, it may promote the reduction in acrosome reactions. The physiological suppression of sperm function may depend on abnormal tyrosine phosphorylation via the alteration of PKA activity. Therefore, we suggest that it is necessary to consider reproductive toxicity when using novaluron as a pesticide.
Collapse
Affiliation(s)
- Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea; (J.-M.H.); (J.-W.B.); (W.-J.L.)
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea; (J.-M.H.); (J.-W.B.); (W.-J.L.)
| | - Eun-Ju Jung
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Korea;
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea; (J.-M.H.); (J.-W.B.); (W.-J.L.)
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea; (J.-M.H.); (J.-W.B.); (W.-J.L.)
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Korea;
- Correspondence: ; Tel.: +82-54-530-1942
| |
Collapse
|
13
|
Zhang X, Zhang T, Ren X, Chen X, Wang S, Qin C. Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies. Front Endocrinol (Lausanne) 2021; 12:656106. [PMID: 34122335 PMCID: PMC8190395 DOI: 10.3389/fendo.2021.656106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Qin
- *Correspondence: Chao Qin, ; ShangQian Wang,
| |
Collapse
|