1
|
Carvalho RPR, Costa RVD, Carvalho IRD, Viana AGA, Lopez CR, Oliveira MS, Guimarães-Ervilha LO, Sousa WVD, Bastos DSS, Miranda ED, Nogueira FCS, Machado-Neves M. Dose-related effects of eugenol: Exploring renal functionality and morphology in healthy Wistar rats. Food Chem Toxicol 2025; 196:115244. [PMID: 39793947 DOI: 10.1016/j.fct.2025.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Eugenol has pharmacological properties, but its impact on renal function is limitedly studied. Thus, this study evaluated the effects of eugenol at 10, 20, and 40 mg kg-1, administered via gavage for 60 days, on histological, biochemical, oxidative, and proteomic parameters in rat kidneys. Adult Wistar rats treated with 10 mg kg-1 of eugenol had kidneys with low total antioxidant capacity, high nitric oxide content, and high percentual of blood vessels, with no damage to renal function or morphology. The kidney proteome revealed an upregulation of proteins associated with energy metabolism, oxidative stress, and mitochondrial function. Eugenol at 20 mg kg-1 did not alter kidney histology but inhibited Na+/K+ ATPase activity. This dose elicited an upregulation of proteins associated with mitochondrial function and cellular defense. Finally, 40 mg kg-1 eugenol had more pronounced effects on the kidney, increasing serum sodium, potassium, and chloride levels, inhibiting Na+/K+ ATPase activity, triggering an adaptive response to oxidative stress, and showing apical brush border thinness in proximal tubules. We concluded that eugenol exerted dose-dependent effects on kidney function and morphology. These findings highlight the importance of careful consideration of eugenol's dosage in therapeutic applications.
Collapse
Affiliation(s)
| | - Rosiany Vieira da Costa
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Isadora Ribeiro de Carvalho
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Arabela Guedes Azevedo Viana
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Camilo Ramirez Lopez
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Mariana Souza Oliveira
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Luiz Otavio Guimarães-Ervilha
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wassali Valadares de Sousa
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Proteomic Unit, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Genetics, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Silva Sena Bastos
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Edgar Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Proteomic Unit, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Machado-Neves
- Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil; Department of Veterinary, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Rajini SV, Sarjan HN, Shivabasavaiah. Ameliorative action of eugenol on nitrate induced reproductive toxicity in male rats. Toxicol Rep 2024; 13:101702. [PMID: 39211010 PMCID: PMC11357871 DOI: 10.1016/j.toxrep.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
There is a great concern for studies to prevent nitrate (NO3) induced male reproductive toxicity as it might lead to infertility. Therefore, the study was aimed to investigate the ameliorative effects of eugenol on NO3 induced male reproductive toxicity in wistar rats. Adult male rats were randomly divided into five groups (n=5). The first group was served as control, the second and third group of rats were treated with 100 mg/kg bw of sodium nitrate (NaNO3) and NO3 contaminated ground water respectively. The fourth and fifth group of rats were orally intubated with eugenol (100 mg/kg bw) and then exposed to NaNO3 and NO3 contaminated ground water respectively. The treatment was continued for 52 days. Nitrate exposure significantly decreased the sperm motility, testicular 3-beta-hydroxysteroid dehydrogenase activity, serum concentration of testosterone, activities of superoxide dismutase and catalase in testis and spermatozoa and different categories of germ cells in stage VII of spermatogenesis. Further, there was significant increase in sperm abnormality and levels of nitrite (NO2) and malondialdehyde in testis and spermatozoa of NO3 treated rats. In addition, NO3 exposure distorted the histological architecture of seminiferous tubules of testis. It was established that NO3 induced high production of NO2 affected spermatogenesis, steroidogenesis and sperm motility. However, in the present study, pretreatment of eugenol prevented NO3 induced reproductive alterations by decreasing the level of NO2. These findings clearly showed the protective action of eugenol against NO3 induced oxidative stress in male reproductive system.
Collapse
Affiliation(s)
| | | | - Shivabasavaiah
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, Karnataka, India
| |
Collapse
|
3
|
Nagaraju PG, S A, Rao PJ, Priyadarshini P. Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats. Nanotoxicology 2024; 18:87-105. [PMID: 38349196 DOI: 10.1080/17435390.2024.2314483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/01/2024] [Indexed: 03/27/2024]
Abstract
The present study aimed to assess the safety, toxicity, biodistribution, and pharmacokinetics of eugenol nanoparticles (EONs) following oral administration in Wistar rat models. In the acute toxicity study, the rats were given a fixed dose of 50, 300, and 2000 mg/kg body weight per group orally and screened for 2 weeks after administration. In the subacute study, three different doses (500, 1000, and 2000 mg/kg BW) of EON were administered for 28 days. The results indicated no significant differences in food and water consumption, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings, or histopathology compared to the control. Additionally, no significant changes were observed in the expression profiles of inflammatory cytokines such as IL-1, IL-6, and TNFα in the plasma, confirming the absence of systemic inflammation. Biodistribution analysis revealed rapid absorption of eugenol and improved bioavailability due to gradual and sustained release, leading to a maximum eugenol concentration of 15.05 μg/mL (Cmax) at approximately 8 h (Tmax) in the blood plasma. Thus, the study provides valuable insights into the utilization of EON for enhancing the stability, solubility, and sustained release of eugenol and highlights its promising safety profile in vivo.
Collapse
Affiliation(s)
- Pramod G Nagaraju
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja J Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plantation Products, Spices and Flavour Technology, CSIR Central Food Technological Research Institute, Mysuru, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Liang W, Zhao Y, Quan G, Yao R, Chen H, Weng X, Li W, Yue X, Li F. Localization and expression of phospholipase A 2 and polyunsaturated fatty acid profile in the testis tissues of Hu sheep. Anim Reprod Sci 2024; 260:107381. [PMID: 38056177 DOI: 10.1016/j.anireprosci.2023.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
The fatty acid content and the localization and expression of phospholipase A2 (PLA2) in the testis of Hu sheep were investigated. A total of 18 six-month-old Hu sheep were divided into small group (S, with left testis weight < 50 g), medium group (M, with left testis weight among 90-110 g), and large group (L, with left testis weight >160 g), which had six individuals each. The expression of PLA2 in testicular tissues of different sizes was analyzed by immunohistochemistry, RT-qPCR, and Western blot. The fatty acid profile was detected by gas chromatography. Immunohistochemical labeling determined that PLA2 protein was expressed in the Leydig and Sertoli cells of testis, and the immunohistochemical average optional density in the S group was significantly greater than the L group (P < 0.05). RT-qPCR and Western blot analysis showed that PLA2 in the S group was greater than that in the L group (P < 0.05). Docosahexaenoic acid, ω-3 polyunsaturated fatty acid (PUFA), and total PUFA content in the testis of the L group were significantly less than those of the S and M groups (P < 0.01). This study showed that PLA2 content in the S group was greater than that in the L group.
Collapse
Affiliation(s)
- Weili Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanhong Zhao
- Tianzhu County Animal Breeding Research Institute, Tianzhu 733200, China
| | - Guodong Quan
- Tianzhu County Animal Breeding Research Institute, Tianzhu 733200, China
| | - Rongyu Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hua Chen
- Gansu Lantiantonghe Agriculture Co.,Ltd., Tianzhu 733200, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Gansu Runmu Biological Engineering Co.,Ltd., Yongchang 737200, China
| |
Collapse
|
5
|
Chilukoti SR, Sahu C, Jena G. Protective role of eugenol against diabetes-induced oxidative stress, DNA damage, and apoptosis in rat testes. J Biochem Mol Toxicol 2024; 38:e23593. [PMID: 38047382 DOI: 10.1002/jbt.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Diabetes mellitus, a metabolic disorder alters gonadal development and spermatogenesis, reactive oxygen species production, DNA damage, and apoptosis, which subsequently lead to male subfertility. Eugenol is an antioxidant, traditionally used as medication for digestive disorders and antioxidant therapy, decrease transport of glucose from GIT to systemic circulation. This experiment was aimed to decipher cellular and molecular insights of eugenol in protecting diabetic germ cells in rats. Rats were assigned randomly into five groups: control, eugenol control (Eugenol 400; EUG), diabetic (DIA), diabetic + eugenol 100 (DIA + EUG 100), and diabetic + eugenol 400 (DIA + EUG 400). EUG 400 and DIA + EUG 400 groups received 400 mg/kg eugenol orally. DIA + EUG 100 group received 100 mg/kg eugenol. Treatment was conducted for 4 weeks. Type 1 diabetes was induced by injecting a single i.p. dose of streptozotocin (55 mg/kg). Morphometric, biochemical, sperm parameters, oxidative stress, hormonal levels, histopathology, and fibrosis in the testis and epididymis, were evaluated. DNA damage was evaluated using halo and comet assays; DNA fragmentation and apoptosis using TUNEL assay. Eugenol treatment significantly normalized biochemical parameters, reduced MDA while increased albumin and GSH levels in diabetes. Eugenol significantly increased sperm numbers, motility and attenuated abnormal sperm head morphology in diabetes. Moreover, eugenol significantly reversed diabetes-induced cellular damages, altered spermatogenesis, and collagen deposition in testis and epididymis. It also significantly attenuated diabetes-associated DNA breaks and apoptosis. These findings suggest that 4 weeks treatment with 400 mg/kg of eugenol could be beneficial for diabetic patients to prevent subfertility.
Collapse
Affiliation(s)
- Sri R Chilukoti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, Punjab, India
| | - Chittaranjan Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, Punjab, India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, Punjab, India
| |
Collapse
|
6
|
Carvalho RPR, Carvalho IRD, Costa RVD, Guimarães-Ervilha LO, Machado-Neves M. The effects of eugenol on histological, enzymatic, and oxidative parameters in the major salivary glands and pancreas of healthy male Wistar rats. Arch Oral Biol 2023; 154:105764. [PMID: 37454526 DOI: 10.1016/j.archoralbio.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE We evaluated the effects of eugenol on histological, enzymatic, and oxidative parameters in the pancreas, parotid, submandibular, and sublingual glands of healthy male rats. DESIGN Twenty-four adult Wistar rats were assigned into four groups (n = 6/group). Control rats received 2% Tween-20 (eugenol vehicle), whereas the other animals received 10, 20, and 40 mg kg-1 eugenol through gavage daily for 60 d. Major salivary and pancreatic glands were weighed and preserved fixed for microscopic analysis and frozen for in vitro assays. RESULTS Eugenol did not alter glands' weight and serum amylase activity regardless of the concentration. The highest dose of eugenol caused an increase in pancreatic amylase activity and a reduction of lipase activity from serum and pancreas. Eugenol at 40 mg kg-1 diminished the activity of SOD and FRAP in the submandibular gland and CAT and FRAP in the sublingual gland. However, it did not exert any effect on GST regardless of the gland. Additionally, 40 mg kg-1 eugenol increased MDA levels in pancreatic, parotid, and submandibular glands and NO levels in the sublingual. The concentrations of eugenol induced distinct responses in the glands regarding the activity of Na+/K+, Mg2+, and total ATPase activity. They also affected histomorphometrical and histochemistrical parameters in the submandibular gland only. CONCLUSIONS Results indicated that 40 mg kg-1 eugenol altered most of the biochemical and oxidatived parameters of digestive glands. Only submandibular glands presented histological changes after eugenol exposure suggesting potential implications for its function.
Collapse
Affiliation(s)
| | | | - Rosiany Vieira da Costa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Liu R, Liu B, Tian L, Wu X, Li X, Cai D, Jiang X, Sun J, Jin Y, Bai W. Induction of reproductive injury by bisphenol A and the protective effects of cyanidin-3-O-glucoside and protocatechuic acid in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163615. [PMID: 37105472 DOI: 10.1016/j.scitotenv.2023.163615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Bisphenol A (BPA) has attracted growing attention as a well-known environmental pollutant due to its high risk of male reproductive toxicity. In this study, transcriptomics profiling combined with metabolomic techniques was applied to explore the intervention effects of BPA-induced male reproductive toxicity. We demonstrated that cyanidin-3-O-glucoside (C3G) and its main metabolite protocatechuic acid (PCA) significantly increased testosterone and luteinizing hormone (LH) levels in the serum of rats, and improved sperm quality. Furthermore, we identified and screened differentially expressed genes (DEGs) and metabolites (DMs) that functionally enriched in the steroidogenesis-related pathways. Next, the validated results found that C3G and PCA significantly up-regulated the gene expressions of Star, Cyp11a1, Cyp17a1, Cyp19a1, Cyp7a1, Hsd3b1, Hsd3b2, Hsd17b3, Scrab1, and Ass1 in testicular. In Leydig cells, C3G and PCA dramatically alleviated apoptosis, ROS accumulation, and cell cycle arrest caused by BPA. In addition, molecular docking and simulation results implied that C3G and PCA competitively with BPA bind to the estrogen receptors α and β (ERα and ERβ) and shared common key amino acids. The main interaction modes between small molecules and estrogen receptors included π-π stacking, salt bridges, hydrogen bonds, and hydrophobic interactions. Therefore, our study sheds light on C3G and PCA supplementation can protect male reproduction from BPA-induced injury.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China; College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Boping Liu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xiaoyan Wu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yulong Jin
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|