1
|
Lara-Moreno A, Aguilar-Romero I, Rubio-Bellido M, Madrid F, Villaverde J, Santos JL, Alonso E, Morillo E. Novel nonylphenol-degrading bacterial strains isolated from sewage sludge: Application in bioremediation of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157647. [PMID: 35907537 DOI: 10.1016/j.scitotenv.2022.157647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is an anthropogenic pollutant frequently found in sewage sludge due to the insufficient degrading effectiveness of conventional WWTPs and has attracted attention as an endocrine disruptor. The aim of this study was to isolate specific NP-degrading bacteria from sewage sludge to be used in the degradation of this contaminant through bioaugmentation processes in aqueous solution and sewage sludge. Up to eight different bacterial strains were isolated, six of them not previously described as NP degraders. Bacillus safensis CN12 presented the best NP degradation in solution, and glucose used as an external carbon source increased its effect, reaching DT50 degradation values (time to decline to half the initial concentration of the pollutant) of only 0.9 days and a complete degradation in <7 days. Four NP metabolites were identified throughout the biodegradation process, showing higher toxicity than the parent contaminant. In sewage sludge suspensions, the endogenous microbiota was capable of partially degrading NP, but a part remained adsorbed as bound residue. Bioaugmentation was used for the first time to remove NP from sewage sludge to obtain more environmentally friendly biosolids. However, B. safensis CN12 was not able to degrade NP due to its high adsorption on sludge, but the use of a cyclodextrin (HPBCD) as availability enhancer allowed us to extract NP and degrade it in solution. The addition of glucose as an external carbon source gave the best results since the metabolism of the sludge microbiota was activated, and HPBCD was able to remove NP from sewage sludge to the solution to be degraded by B. safensis CN12. These results indicate that B. safensis CN12 can be used to degrade NP in water and sewage sludge, but the method must be improved using consortia of B. safensis CN12 with other bacterial strains able to degrade the toxic metabolites produced.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - I Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - M Rubio-Bellido
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - J L Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|
2
|
Hong P, Yang K, Shu Y, Xiao B, Wu H, Xie Y, Gu Y, Qian F, Wu X. Efficacy of auto-aggregating aerobic denitrifiers with coaggregation traits for bioaugmentation performance in biofilm-formation and nitrogen-removal. BIORESOURCE TECHNOLOGY 2021; 337:125391. [PMID: 34139566 DOI: 10.1016/j.biortech.2021.125391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
To promote efficiency nitrogen-rich wastewater treatment from a sequencing batch biofilm reactor (SBBR), three aerobic denitrifiers (Pseudomonas mendocinaIHB602, Methylobacterium gregansDC-1 and Pseudomonas stutzeriIHB618) with dual-capacities of strong auto-aggregation and high nitrogen removal efficiency were studied. The aggregation index analysis indicated that coaggregation of the three strains co-existed was better when compared with one or two strains grown alone. Optimal coaggregation strains were used to bioaugmente a test reactor (SBBRT), which exhibited a shorter time for biofilm-formation than uninoculated control reactor (SBBRC). With different influent ammonia-N loads (150, 200 and 300 mg·L-1), the average ammonia-N and nitrate-N removal efficiency were all higher than that in SBBRC, as well as a lower nitrite-N accumulation. Microbial community structure analysis revealed coaggregation strains may successfully colonize in the bioreactor and be very tolerant of high nitrogen concentrations, and contribute to the high efficiency of inorganic nitrogen-removal and biofilm-formation.
Collapse
Affiliation(s)
- Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Keyin Yang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Anhui Normal University, Wuhu 241000, China
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Yunyun Xie
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Yali Gu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Fangping Qian
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Afonso AC, Gomes IB, Saavedra MJ, Giaouris E, Simões LC, Simões M. Bacterial coaggregation in aquatic systems. WATER RESEARCH 2021; 196:117037. [PMID: 33751976 DOI: 10.1016/j.watres.2021.117037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The establishment of a sessile community is believed to occur in a sequence of steps where genetically distinct bacteria can become attached to partner cells via specific molecules, in a process known as coaggregation. The presence of bacteria with the ability to autoaggregate and coaggregate has been described for diverse aquatic systems, particularly freshwater, drinking water, wastewater, and marine water. In these aquatic systems, coaggregation already demonstrated a role in the development of complex multispecies sessile communities, including biofilms. While specific molecular aspects on coaggregation in aquatic systems remain to be understood, clear evidence exist on the impact of this mechanism in multispecies biofilm resilience and homeostasis. The identification of bridging bacteria among coaggregating consortia has potential to improve the performance of wastewater treatment plants and/or to contribute for the development of strategies to control undesirable biofilms. This study provides a comprehensive analysis on the occurrence and role of bacterial coaggregation in diverse aquatic systems. The potential of this mechanism in water-related biotechnology is further described, with particular emphasis on the role of bridging bacteria.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Inês B Gomes
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria José Saavedra
- CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, Myrina 81400, Lemnos, Greece
| | - Lúcia C Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuel Simões
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. WATER 2020. [DOI: 10.3390/w12010140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, a multifaceted approach for selecting the suitable candidates for bioaugmentation of activated sludge (AS) that supports leachate treatment was used. To determine the exploitation of 10 bacterial strains isolated from the various matrices for inoculating the AS contaminated with the Kalina pond leachate (KPL), their degradative potential was analyzed along with their aptitude to synthesize compounds improving remediation of pollutants in wastewater and ability to incorporate into the AS flocs. Based on their capability to degrade aromatic compounds (primarily catechol, phenol, and cresols) at a concentration of 1 mg/mL and survive in 12.5% of the KPL, Pseudomonas putida OR45a and P. putida KB3 can be considered to be the best candidates for bioaugmentation of the AS among all of the bacteria tested. Genomic analyses of these two strains revealed the presence of the genes encoding enzymes related to the metabolism of aromatic compounds. Additionally, both microorganisms exhibited a high hydrophobic propensity (above 50%) and an ability to produce biosurfactants as well as high resistance to ammonium (above 600 µg/mL) and heavy metals (especially chromium). These properties enable the exploitation of both bacterial strains in the bioremediation of the AS contaminated with the KPL.
Collapse
|
5
|
Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress. Appl Environ Microbiol 2019; 85:AEM.01196-19. [PMID: 31375492 DOI: 10.1128/aem.01196-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, Rhodococcus ruber YYL, and a non-THF-degrading strain, Bacillus cereus MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed.IMPORTANCE Rhodococcus species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, Bacillus cereus strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of Rhodococcus ruber YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.
Collapse
|
6
|
Irankhah S, Abdi Ali A, Reza Soudi M, Gharavi S, Ayati B. Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria. World J Microbiol Biotechnol 2018; 34:164. [PMID: 30368594 DOI: 10.1007/s11274-018-2543-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/20/2018] [Indexed: 11/26/2022]
Abstract
In this study, the efficiency improvement of three moving bed biofilm reactors (MBBRs) was investigated by inoculation of activated sludge cells (R1), mixed culture of eight strong phenol-degrading bacteria consisted of Pseudomonas spp. and Acinetobacter spp. (R2) and the combination of both (R3). Biofilm formation ability of eight bacteria was assessed initially using different methods and media. Maximum degradation of phenol, COD, biomass growth and also changes in organic loading shock were used as parameters to measure the performance of reactors. According to the results, all eight strains were determined as enhanced biofilm forming bacteria (EBFB). Under optimum operating conditions, more than 90% of initial COD load of 2795 mg L-1 was reduced at 24 HRT in R3 while this reduction efficiency was observed in concentrations of 1290 mg L-1 and 1935 mg L-1, in R1 and R2, respectively. When encountering phenol loading shock-twice greater than optimum amount-R1, R2 and R3 managed to return to the steady-state condition within 32, 24 and 18 days, respectively. SEM microscopy and biomass growth measurements confirmed the contribution of more cells to biofilm formation in R3 followed by R2. Additionally, established biofilm in R3 was more resistant to phenol loading shock which can be attributed to the enhancer role of EBFB strains in this reactor. It has been demonstrated that the bacteria with both biofilm-forming and contaminant-degrading abilities are not only able to promote the immobilization of other favorable activated sludge cells in biofilm structure, but also cooperate in contaminant degradation which all consequently lead to improvement of treatment efficiency.
Collapse
Affiliation(s)
- Sahar Irankhah
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, 1993891176, Iran
| | - Ahya Abdi Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, 1993891176, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, 1993891176, Iran
| | - Sara Gharavi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Bita Ayati
- Environmental Engineering Division, Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Zheng G, Wang T, Niu M, Chen X, Liu C, Wang Y, Chen T. Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:783-791. [PMID: 29626822 DOI: 10.1016/j.envpol.2018.03.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r = 0.63, p < 0.05). Under aeration, Bacillus remained the dominant bacteria, especially in the thermal phase; this phenomenon possibly increased the biodegradation efficiency of NP. High-volume aeration accelerated the activity and prolonged the survival of Bacillus. The risk of organic pollution could be decreased prior to sewage sludge reuse in soil by adjusting the ventilation strategies of aerobic compost measurements.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tieyu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Niu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changli Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Yue W, Chen M, Cheng Z, Xie L, Li M. Bioaugmentation of strain Methylobacterium sp. C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:431-440. [PMID: 29096256 DOI: 10.1016/j.jhazmat.2017.10.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
This work was conducted in order to evaluate an instance of bioaugmentation, namely, the addition of a novel p-nitrophenol (PNP)-degrading bacterium Methylobacterium sp. C1 coaggregated with two other broad-spectrum coaggregating strains (Bacillus megaterium T1 and Bacillus cereus G5) within sequence batch biofilm reactors (SBBRs). Results showed that biofilms consisting of C1 and coaggregating bacteria were resistant to shock loads and were more efficient at PNP removal. High-throughput sequencing data revealed that biofilms formed in the presence of the coaggregating bacteria demonstrated greater microbial diversity. These results suggest that broad-spectrum coaggregating bacteria may be capable of mediating the immobilization of exogenous degrading bacteria into biofilms, rendering them more resistant to toxic compounds and environmental stresses. This represents the first attempt to assess the bioaugmentation of PNP-contaminated wastewater treatment through the utilization of broad-spectrum coaggregating bacteria.
Collapse
Affiliation(s)
- Wenlong Yue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Mei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Zhongqin Cheng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Liqun Xie
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Mengying Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
9
|
Liu Z, He Z, Huang H, Ran X, Oluwafunmilayo AO, Lu Z. pH Stress-Induced Cooperation between Rhodococcus ruber YYL and Bacillus cereus MLY1 in Biodegradation of Tetrahydrofuran. Front Microbiol 2017; 8:2297. [PMID: 29209303 PMCID: PMC5702389 DOI: 10.3389/fmicb.2017.02297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Microbial consortia consisting of cooperational strains exhibit biodegradation performance superior to that of single microbial strains and improved remediation efficiency by relieving the environmental stress. Tetrahydrofuran (THF), a universal solvent widely used in chemical and pharmaceutical synthesis, significantly affects the environment. As a refractory pollutant, THF can be degraded by some microbial strains under suitable conditions. There are often a variety of stresses, especially pH stress, that inhibit the THF-degradation efficiency of microbial consortia. Therefore, it is necessary to study the molecular mechanisms of microbial cooperational degradation of THF. In this study, under conditions of low pH (initial pH = 7.0) stress, a synergistic promotion of the THF degradation capability of the strain Rhodococcus ruber YYL was found in the presence of a non-THF degrading strain Bacillus cereus MLY1. Metatranscriptome analysis revealed that the low pH stress induced the strain YYL to up-regulate the genes involved in anti-oxidation, mutation, steroid and bile acid metabolism, and translation, while simultaneously down-regulating the genes involved in ATP production. In the co-culture system, strain MLY1 provides fatty acids, ATP, and amino acids for strain YYL in response to low pH stress during THF degradation. In return, YYL shares the metabolic intermediates of THF with MLY1 as carbon sources. This study provides the preliminary mechanism to understand how microbial consortia improve the degradation efficiency of refractory furan pollutants under environmental stress conditions.
Collapse
Affiliation(s)
- Zubi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhixing He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuebin Ran
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Priac A, Morin-Crini N, Druart C, Gavoille S, Bradu C, Lagarrigue C, Torri G, Winterton P, Crini G. Alkylphenol and alkylphenol polyethoxylates in water and wastewater: A review of options for their elimination. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2014.05.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Zhao J, Chi Y, Liu F, Jia D, Yao K. Effects of Two Surfactants and Beta-Cyclodextrin on Beta-Cypermethrin Degradation by Bacillus licheniformis B-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10729-10735. [PMID: 26615963 DOI: 10.1021/acs.jafc.5b04485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biodegradation efficiency of beta-cypermethrin (β-CY) is low especially at high concentrations mainly due to poor contact between this hydrophobic pesticide and microbial cells. In this study, the effects of two biodegradable surfactants (Tween-80 and Brij-35) and β-cyclodextrin (β-CD) on the growth and cell surface hydrophobicity (CSH) of Bacillus licheniformis B-1 were studied. Furthermore, their effects on the solubility, biosorption, and degradation of β-CY were investigated. The results showed that Tween-80 could slightly promote the growth of the strain while Brij-35 and β-CD exhibited little effect on its growth. The CSH of strain B-1 and the solubility of β-CY were obviously changed by using Tween-80 and Brij-35. The surfactants and β-CD could enhance β-CY biosorption and degradation by the strain, and the highest degradation was obtained in the presence of Brij-35. When the surfactant or β-CD concentration was 2.4 g/L, the degradation rate of β-CY in Brij-35, Tween-80, and β-CD treatments was 89.4%, 50.5%, and 48.1%, respectively. The half-life of β-CY by using Brij-35 was shortened by 69.1 h. Beta-CY content in the soil with both strain B-1 and Brij-35 decreased from 22.29 mg/kg to 4.41 mg/kg after incubation for 22 d. This work can provide a promising approach for the efficient degradation of pyrethroid pesticides by microorganisms.
Collapse
Affiliation(s)
- Jiayuan Zhao
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Yuanlong Chi
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Fangfang Liu
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Dongying Jia
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Kai Yao
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| |
Collapse
|
12
|
Bioaugmentation of a sequencing batch biofilm reactor with Comamonas testosteroni and Bacillus cereus and their impact on reactor bacterial communities. Biotechnol Lett 2014; 37:367-73. [DOI: 10.1007/s10529-014-1684-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/05/2014] [Indexed: 01/28/2023]
|
13
|
Cheng Z, Meng X, Wang H, Chen M, Li M. Isolation and characterization of broad spectrum coaggregating bacteria from different water systems for potential use in bioaugmentation. PLoS One 2014; 9:e94220. [PMID: 24736645 PMCID: PMC3988075 DOI: 10.1371/journal.pone.0094220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/13/2014] [Indexed: 01/30/2023] Open
Abstract
The bridging bacteria with broad-spectrum coaggregation ability play an important role during multispecies-biofilm development. In this study, through a visual and semi-quantitative assay, twenty-two bacterial strains with aggregation ability were obtained from 8 different water environments, and these strains were assigned to 7 genera according to their 16S rDNA and they were Aeromonas, Bacillus, Comamonas, Exiguobacterium, Pseudomonas, Shewanella and Comamonas. Furthermore, all possible 231 pairwise combinations among these 22 strains were explored for coaggregation ability by spectrophotometric assay. Among all these strains, it was found that Bacillus cereus G5 and Bacillus megaterium T1 coaggregated with themajority of assayed other strains, 90.5% (19 of 21 strains) and 76.2% respectively (17 of 21 strains) at a higher coaggregation rates (A.I. greater than 50%), indicating they have a broad-spectrum coaggregation property. The images of coaggregates also confirmed the coexistence of G5 and T1 with their partner strains. Biofilm biomass development of G5 cocultured with each of its partner strains were further evaluateded. The results showed that 15 of 21 strains, when paired with G5, developed greater biofilm biomass than the monocultures. Furthermore, the images from both fluorescence microscopy and scanning electron microscopy (SEM) demonstrated that G5 and A3-GFP (a 3,5-dinitrobenzoic acid-degrading strain, staining with gfp),could develop a typical spatial structure of dual-species biofilm when cocultured. These results suggested that bridging-bacteria with a broad spectrum coaggregating ability, such as G5,could mediate the integration of exogenous degrading bacteria into biofilms and contribute to the bioaugmentation treatment.
Collapse
Affiliation(s)
- Zhongqin Cheng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, PR China
| | - Xiangxun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, PR China
| | - Haichao Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, PR China
| | - Mei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, PR China
| | - Mengying Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
14
|
Sciubba L, Bertin L, Todaro D, Bettini C, Fava F, Di Gioia D. Biodegradation of low-ethoxylated nonylphenols in a bioreactor packed with a new ceramic support (Vukopor ® S10). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3241-3253. [PMID: 24217973 DOI: 10.1007/s11356-013-2290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
This work was aimed at studying the possibility of biodegrading 4-nonylphenol and low ethoxylated nonylphenol mixtures, which are particularly recalcitrant to microbial degradation, by employing a biofilm reactor packed with a ceramic support (Vukopor® S10). A selected microbial consortium (Consortium A) was used to colonize the support. 4-Nonylphenol and ethoxylated nonylphenol degradation and mineralization capabilities were studied both in batch and continuous mode. The results showed that Vukopor® S10 was able to be colonized by an active biofilm for the degradation of the target pollutants with the reactor operating both in batch and continuous mode. On the other hand, pollutant adsorption on the support was negligible. FISH showed equal proportion of Alphaproteobacteria and Gammaproteobacteria in the Igepal CO-520 degrading reactor. A shift towards high proportion of Gammaproteobacteria was observed by supplying Igepal CO-210. PCR-density gradient gel electrophoresis (DGGE) analyses also evidenced that the biofilm evolved with time by changing the mixture applied and that Proteobacteria were the most represented phylum in the biofilm. Taken together, the data obtained provide a strong indication that the biofilm reactor packed with Vukopor® S10 and inoculated with Consortium A could potentially be used to develop a technology for the decontamination of 4-nonylphenol and low ethoxylated nonylphenol polluted effluents.
Collapse
Affiliation(s)
- Luigi Sciubba
- Department of Agricultural Sciences, Alma Mater Studiorum, University of Bologna, viale Fanin, 44, 40127, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 2013; 25:55-65. [DOI: 10.1007/s10532-013-9640-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
16
|
Phuong K, Hanazaki S, Kakii K, Nikata T. Involvement of Acinetobacter sp. in the floc-formation in activated sludge process. J Biotechnol 2012; 157:505-11. [DOI: 10.1016/j.jbiotec.2011.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 09/02/2011] [Accepted: 09/22/2011] [Indexed: 11/16/2022]
|
17
|
Kagle J, Porter AW, Murdoch RW, Rivera-Cancel G, Hay AG. Biodegradation of pharmaceutical and personal care products. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:65-108. [PMID: 19245937 DOI: 10.1016/s0065-2164(08)01003-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Medical treatments and personal hygiene lead to the steady release of pharmaceutical and personal care products (PPCPs) into the environment. Some of these PPCPs have been shown to have detrimental environmental effects and could potentially impact human health. Understanding the biological transformation of PPCPs is essential for accurately determining their ultimate environmental fate, conducting accurate risk assessments, and improving PPCP removal. We summarize the current literature concerning the biological transformation of PPCPs in wastewater treatment plants, the environment, and by pure cultures of bacterial isolates. Although some PPCPs, such as ibuprofen, are readily degraded under most studied conditions, others, such as carbamazepine, tend to be recalcitrant. This variation in the biodegradability of PPCPs can be attributed to structural differences, because PPCPs are classified by application, not chemical structure. The degradation pathways of octylphenol by Sphingomonas sp. strain PWE1, ibuprofen by Sphingomonas sp. strain Ibu-2, and DEET by Pseudomonas putida DTB are discussed in more detail.
Collapse
Affiliation(s)
- Jeanne Kagle
- Department of Biology, Mansfield University, Mansfield, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
18
|
Phuong K, Kakii K, Nikata T. Intergeneric coaggregation of non-flocculating Acinetobacter spp. isolates with other sludge-constituting bacteria. J Biosci Bioeng 2009; 107:394-400. [DOI: 10.1016/j.jbiosc.2008.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/22/2008] [Indexed: 01/09/2023]
|
19
|
Characterization of 4-nonylphenol-degrading bacterial consortium obtained from a textile wastewater pretreatment plant. Arch Microbiol 2008; 190:673-83. [DOI: 10.1007/s00203-008-0419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
20
|
Zhang Y, Sei K, Toyama T, Ike M, Zhang J, Yang M, Kamagata Y. Changes of catabolic genes and microbial community structures during biodegradation of nonylphenol ethoxylates and nonylphenol in natural water microcosms. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Di Gioia D, Michelles A, Pierini M, Bogialli S, Fava F, Barberio C. Selection and characterization of aerobic bacteria capable of degrading commercial mixtures of low-ethoxylated nonylphenols. J Appl Microbiol 2007; 104:231-42. [PMID: 17850311 DOI: 10.1111/j.1365-2672.2007.03541.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Isolation and characterization of new bacterial strains capable of degrading nonylphenol ethoxylates (NPnEO) with a low ethoxylation degree, which are particularly recalcitrant to biodegradation. METHODS AND RESULTS Seven aerobic bacterial strains were isolated from activated sludges derived from an Italian plant receiving NPnEO-contaminated wastewaters after enrichment with a low-ethoxylated NPnEO mixture. On the basis of 16S rDNA sequence, the strains were positioned into five genera: Ochrobactrum, Castellaniella, Variovorax, Pseudomonas and Psychrobacter. Their degradation capabilities have been evaluated on two commercial mixtures, i.e. Igepal CO-210 and Igepal CO-520, the former rich in low ethoxylated congeners and the latter containing a broader spectrum of NPnEO, and on 4-n-nonylphenol (NP). The strains degraded Igepal CO-210, Igepal CO-520 and 4-n-NP all applied at the initial concentration of 100 mg l(-1), by 35-75%, 35-90% and 15-25%, respectively, after 25 days of incubation. CONCLUSIONS Some of the isolated strains, in particular the Pseudomonas strains BCb12/1 and BCb12/3, showed interesting degradation capabilities towards low ethoxylated NPnEO congeners maintaining high cell vitality. SIGNIFICANCE AND IMPACT OF THE STUDY Increased knowledge of bacteria involved in NPnEO degradation and the possibility of using the isolated strains in tailored process for a tertiary biological treatment of effluents of wastewater treatment plants.
Collapse
Affiliation(s)
- D Di Gioia
- DICASM, Faculty of Engineering, University of Bologna, viale Risorgimento 2, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Collina E, Lasagni M, Pitea D, Franzetti A, Di Gennaro P, Bestetti G. Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition. ACTA ACUST UNITED AC 2007; 97:799-805. [DOI: 10.1002/adic.200790065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Jiang HL, Tay JH, Maszenan AM, Tay STL. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:6137-42. [PMID: 17051812 DOI: 10.1021/es0609295] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The effect of coaggregation of the two bacterial strains Propioniferax-like PG-02 and Comamonassp. PG-08 on phenol degradation and aerobic granulation was investigated. While PG-02 was characterized as a phenol-degrader with a low half-saturation kinetics constant, PG-08 possessed strong aggregation ability with poor phenol degradation ability. The two strains coaggregated through involvement of lectin-saccharide interactions with the adhesin protein on strain PG-02 and the complementary sugar receptor on strain PG-08. Using the V. harveyi reporter strain BB170, it was found that both strains could produce autoinducer-2-like signals. If incubated together, the two strains showed cooperation for phenol degradation. In batch, the coculture degraded phenol at an initial concentration of 250 mg L(-1), faster than each strain separately. Bioaugmentation with simultaneously the two strains in sequencing batch reactors significantly improved phenol removal and aerobic granulation as compared to monoculture bioaugmentation. Bacterial coaggregation might be an integral component of the aerobic granulation process. Investigation of in situ occurrence of coggregation in aerobic granulation would help unveil its molecular mechanism. Then the granulation process could be improved through selection of specific microbial groups.
Collapse
Affiliation(s)
- He-Long Jiang
- Environmental Engineering Research Centre, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| | | | | | | |
Collapse
|
24
|
Franzetti A, Di Gennaro P, Bevilacqua A, Papacchini M, Bestetti G. Environmental features of two commercial surfactants widely used in soil remediation. CHEMOSPHERE 2006; 62:1474-80. [PMID: 16084568 DOI: 10.1016/j.chemosphere.2005.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 05/27/2005] [Accepted: 06/12/2005] [Indexed: 05/03/2023]
Abstract
One of the main limitations for a wider application of surfactants in soil remediation is the lack of knowledge about environmental fate and toxicity of surfactant itself especially for in situ application. Sorption behaviour, biodegradability, toxicity of parent compound and its metabolites are important processes that affect environmental fate of surfactants in site remediation applications. Tween 80 (poly(oxyethylene)(20)-sorbitane monooleate) and Aerosol MA+80 (dihexyl sodium sulfosuccinate) are surfactants that have been tested in laboratory and field scale remediation of soil and groundwater. In this work, the sorption and biodegradability of these surfactants were assessed to provide conditions and limitations for their use. The soil used in this experimentation was analysed for organic carbon content, soil bacteria, and size fraction and resulted to be a good model because is characterised by mean values for almost all considered parameters. Tween 80 showed high degree of biodegradability but a high affinity for soil matrix. Results suggest that Tween 80 could find its best application in ex situ solid phase remediation like ex situ bioremediation; its high affinity to soil could limit in situ applications. Biodegradation tests for Aerosol MA+80 show low degree of biodegradability and mineralisation. Biodegradation experiments, coupled with analysis of toxicity, could support the hypothesis that degradation of Aerosol MA+80 is not complete and leads to an accumulation of intermediates with at least the same toxicity of the parental compound. Therefore, aquifer remediation application with Aerosol MA+80 has to be conducted with necessary precautions to avoid product loss and excess surfactant should be flushed from the soil.
Collapse
Affiliation(s)
- Andrea Franzetti
- Department of Environmental Sciences, University of Milano-Bicocca, p. della Scienza 1, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
25
|
Salvadori L, Gioia DD, Fava F, Barberio C. Degradation of Low-Ethoxylated Nonylphenols by a Stenotrophomonas Strain and Development of New Phylogenetic Probes for Stenotrophomonas spp. Detection. Curr Microbiol 2006; 52:13-20. [PMID: 16392004 DOI: 10.1007/s00284-005-0055-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/02/2005] [Indexed: 11/28/2022]
Abstract
An aerobic bacterium (BCc6), isolated from nonylphenol polyethoxylates (NPEOs)-contaminated sludge, was shown to be capable of degrading low-ethoxylated NPEO mixtures. Sequencing of 16S rRNA gene (rDNA) showed that it clustered with Stenotrophomonas nitritireducens. Fluorescent in situ hybridization (FISH), performed on BCc6 strain and on the previously isolated Stenotrophomonas BCaL2, also involved in NPEO degradation but clustering with S. maltophilia, showed that strain BCc6 did not hybridize with the S. maltophilia-specific probe, and neither of the two strains hybridized with probes targeted to the Gammaproteobacteria site, rDNA analyses performed on the two strains evidenced two new polymorphisms, the first one at the 23S rRNA Gammaproteobacteria site, characterizing the known members of the Stenotrophomonas genus, and the other one at the 16S rRNA level, characteristic of S. nitritireducens. Two new FISH probes were designed accordingly, tested on control bacterial cultures, and employed for in situ monitoring of Stenotrophomonas representatives.
Collapse
MESH Headings
- Biodegradation, Environmental
- Colony Count, Microbial
- DNA Probes
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ethylene Glycols/metabolism
- Gammaproteobacteria/genetics
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Genetic
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
- Sewage/microbiology
- Stenotrophomonas/classification
- Stenotrophomonas/genetics
- Stenotrophomonas/isolation & purification
- Stenotrophomonas/metabolism
- Water Microbiology
Collapse
Affiliation(s)
- Laura Salvadori
- Departimento di Biologia Animale e Genetica, via Romana 17, 50125 Firenze, Italy.
| | | | | | | |
Collapse
|
26
|
Cell Aggregation in Cultures of Micrococcus luteus, Studied by Dynamic Light Scattering. APPL BIOCHEM MICRO+ 2005. [DOI: 10.1007/s10438-005-0103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|