1
|
Ho CH, Yang TY, Tseng SP, Su PY. Antimicrobial efficacy and amino acid substitutions associated with susceptibility to the tellurium compound AS101 against Haemophilus influenzae and Haemophilus parainfluenzae. Int Microbiol 2024:10.1007/s10123-024-00558-y. [PMID: 38987387 DOI: 10.1007/s10123-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The tellurite toxicity in Haemophilus influenzae and H. parainfluenzae remains unclear. To understand the potential of tellurite as a therapeutic option for these bacteria, we investigated the antimicrobial efficacy of AS101, a tellurium compound, against H. influenzae and H. parainfluenzae and the molecular basis of their differences in AS101 susceptibility. Through broth microdilution, we examined the minimum inhibitory concentration (MIC) of AS101 in 51 H. influenzae and 28 H. parainfluenzae isolates. Whole-genome sequencing was performed on the H. influenzae isolates to identify genetic variations associated with AS101 susceptibility. The MICs of AS101 were ≦ 4, 16-32, and ≧ 64 μg/mL in 9 (17.6%), 12 (23.5%), and 30 (58.8%) H. influenzae isolates, respectively, whereas ≦ 0.5 μg/mL in all H. parainfluenzae isolates, including multidrug-resistant isolates. Time-killing kinetic assay and scanning electron microscopy revealed the in vitro bactericidal activity of AS101 against H. parainfluenzae. Forty variations in nine tellurite resistance-related genes were associated with AS101 susceptibility. Logistic regression, receiver operator characteristic curve analysis, Venn diagram, and protein sequence alignment indicated that Val195Ile substitution in TerC, Ser93Gly in Gor (glutathione reductase), Pro44Ala/Ala50Pro in NapB (nitrate reductase), Val307Leu in TehA (tellurite resistance protein), Cys105Arg in CysK (cysteine synthase), and Thr364Ser in Csd (Cysteine desulfurase) were strongly associated with reduced AS101 susceptibility, whereas Ser155Pro in TehA with increased AS101 susceptibility. In conclusions, the antimicrobial efficacy of AS101 is high against H. parainfluenzae but low against H. influenzae. Genetic variations and corresponding protein changes relevant to AS101 non-susceptibility in H. influenzae were identified.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Yi Su
- Department of Laboratory Medicine, E-DA Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Firrincieli A, Tornatore E, Piacenza E, Cappelletti M, Saiano F, Pavia FC, Alduina R, Zannoni D, Presentato A. The actinomycete Kitasatospora sp. SeTe27, subjected to adaptive laboratory evolution (ALE) in the presence of selenite, varies its cellular morphology, redox stability, and tolerance to the toxic oxyanion. CHEMOSPHERE 2024; 354:141712. [PMID: 38484991 DOI: 10.1016/j.chemosphere.2024.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Enrico Tornatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Filippo Saiano
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze Ed. 4, 90128, Palermo, Italy.
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128, Palermo, Italy.
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
3
|
Alonso‐Fernandes E, Fernández‐Llamosas H, Cano I, Serrano‐Pelejero C, Castro L, Díaz E, Carmona M. Enhancing tellurite and selenite bioconversions by overexpressing a methyltransferase from
Aromatoleum
sp. CIB. Microb Biotechnol 2022; 16:915-930. [PMID: 36366868 PMCID: PMC10128142 DOI: 10.1111/1751-7915.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pollution by metalloids, e.g., tellurite and selenite, is of serious environmental concern and, therefore, there is an increasing interest in searching for ecologically friendly solutions for their elimination. Some microorganisms are able to reduce toxic tellurite/selenite into less toxic elemental tellurium (Te) and selenium (Se). Here, we describe the use of the environmentally relevant β-proteobacterium Aromatoleum sp. CIB as a platform for tellurite elimination. Aromatoleum sp. CIB was shown to tolerate 0.2 and 0.5 mM tellurite at aerobic and anaerobic conditions, respectively. Furthermore, the CIB strain was able to reduce tellurite into elemental Te producing rod-shaped Te nanoparticles (TeNPs) of around 200 nm length. A search in the genome of Aromatoleum sp. CIB revealed the presence of a gene, AzCIB_0135, which encodes a new methyltransferase that methylates tellurite and also selenite. AzCIB_0135 orthologs are widely distributed in bacterial genomes. The overexpression of the AzCIB_0135 gene both in Escherichia coli and Aromatoleum sp. CIB speeds up tellurite and selenite removal, and it enhances the production of rod-shaped TeNPs and spherical Se nanoparticles (SeNPs), respectively. Thus, the overexpression of a methylase becomes a new genetic strategy to optimize bacterial catalysts for tellurite/selenite bioremediation and for the programmed biosynthesis of metallic nanoparticles of biotechnological interest.
Collapse
Affiliation(s)
- Elena Alonso‐Fernandes
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Helga Fernández‐Llamosas
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Irene Cano
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Cristina Serrano‐Pelejero
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Laura Castro
- Department of Material Science and Metallurgical Engineering, Facultad de Químicas Universidad Complutense de Madrid Madrid Spain
| | - Eduardo Díaz
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| |
Collapse
|
4
|
Kessi J, Turner RJ, Zannoni D. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Biol Res 2022; 55:17. [PMID: 35382884 PMCID: PMC8981825 DOI: 10.1186/s40659-022-00378-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
This opinion review explores the microbiology of tellurite, TeO32- and selenite, SeO32- oxyanions, two similar Group 16 chalcogen elements, but with slightly different physicochemical properties that lead to intriguing biological differences. Selenium, Se, is a required trace element compared to tellurium, Te, which is not. Here, the challenges around understanding the uptake transport mechanisms of these anions, as reflected in the model organisms used by different groups, are described. This leads to a discussion around how these oxyanions are subsequently reduced to nanomaterials, which mechanistically, has controversies between ideas around the molecule chemistry, chemical reactions involving reduced glutathione and reactive oxygen species (ROS) production along with the bioenergetics at the membrane versus the cytoplasm. Of particular interest is the linkage of glutathione and thioredoxin chemistry from the cytoplasm through the membrane electron transport chain (ETC) system/quinones to the periplasm. Throughout the opinion review we identify open and unanswered questions about the microbial physiology under selenite and tellurite exposure. Thus, demonstrating how far we have come, yet the exciting research directions that are still possible. The review is written in a conversational manner from three long-term researchers in the field, through which to play homage to the late Professor Claudio Vásquez.
Collapse
Affiliation(s)
- Janine Kessi
- Until 2018 - Dept of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Raymond J. Turner
- Dept of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Davide Zannoni
- Dept of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Peng W, Wang Y, Fu Y, Deng Z, Lin S, Liang R. Characterization of the Tellurite-Resistance Properties and Identification of the Core Function Genes for Tellurite Resistance in Pseudomonas citronellolis SJTE-3. Microorganisms 2022; 10:microorganisms10010095. [PMID: 35056544 PMCID: PMC8779313 DOI: 10.3390/microorganisms10010095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tellurite is highly toxic to bacteria and commonly used in the clinical screening for pathogens; it is speculated that there is a potential relationship between tellurite resistance and bacterial pathogenicity. Until now, the core function genes of tellurite resistance and their characteristics are still obscure. Pseudomonas citronellolis SJTE-3 was found able to resist high concentrations of tellurite (250 μg/mL) and formed vacuole-like tellurium nanostructures. The terZABCDE gene cluster located in the large plasmid pRBL16 endowed strain SJTE-3 with the tellurite resistance of high levels. Although the terC and terD genes were identified as the core function genes for tellurite reduction and resistance, the inhibition of cell growth was observed when they were used solely. Interestingly, co-expression of the terA gene or terZ gene could relieve the burden caused by the expression of the terCD genes and recover normal cell growth. TerC and TerD proteins commonly shared the conserved sequences and are widely distributed in many pathogenic bacteria, highly associated with the pathogenicity factors.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel./Fax: +86-21-34204192
| |
Collapse
|
6
|
Goff JL, Boyanov MI, Kemner KM, Yee N. The role of cysteine in tellurate reduction and toxicity. Biometals 2021; 34:937-946. [PMID: 34255250 DOI: 10.1007/s10534-021-00319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
The tellurium oxyanion tellurate is toxic to living organisms even at low concentrations; however, its mechanism of toxicity is poorly understood. Here, we show that exposure of Escherichia coli K-12 to tellurate results in reduction to elemental tellurium (Te[0]) and the formation of intracellular reactive oxygen species (ROS). Toxicity assays performed with E. coli indicated that pre-oxidation of the intracellular thiol pools increases cellular resistance to tellurate-suggesting that intracellular thiols are important in tellurate toxicity. X-ray absorption spectroscopy experiments demonstrated that cysteine reduces tellurate to elemental tellurium. This redox reaction was found to generate superoxide anions. These results indicate that tellurate reduction to Te(0) by cysteine is a source of ROS in the cytoplasm of tellurate-exposed cells.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, 1113, Sofia, Bulgaria.,Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
7
|
Caldeira JB, Morais PV, Branco R. Exploiting the biological response of two Serratia fonticola strains to the critical metals, gallium and indium. Sci Rep 2020; 10:20348. [PMID: 33230153 PMCID: PMC7683552 DOI: 10.1038/s41598-020-77447-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
The use of microorganisms that allows the recovery of critical high-tech elements such as gallium (Ga) and indium (In) has been considered an excellent eco-strategy. In this perspective, it is relevant to understand the strategies of Ga and In resistant strains to cope with these critical metals. This study aimed to explore the effect of these metals on two Ga/In resistant strains and to scrutinize the biological processes behind the oxidative stress in response to exposure to these critical metals. Two strains of Serratia fonticola, A3242 and B2A1Ga1, with high resistance to Ga and In, were submitted to metal stress and their protein profiles showed an overexpressed Superoxide Dismutase (SOD) in presence of In. Results of inhibitor-protein native gel incubations identified the overexpressed enzyme as a Fe-SOD. Both strains exhibited a huge increase of oxidative stress when exposed to indium, visible by an extreme high amount of reactive oxygen species (ROS) production. The toxicity induced by indium triggered biological mechanisms of stress control namely, the decrease in reduced glutathione/total glutathione levels and an increase in the SOD activity. The effect of gallium in cells was not so boisterous, visible only by the decrease of reduced glutathione levels. Analysis of the cellular metabolic viability revealed that each strain was affected differently by the critical metals, which could be related to the distinct metal uptakes. Strain A3242 accumulated more Ga and In in comparison to strain B2A1Ga1, and showed lower metabolic activity. Understanding the biological response of the two metal resistant strains of S. fonticola to stress induced by Ga and In will tackle the current gap of information related with bacteria-critical metals interactions.
Collapse
Affiliation(s)
- Joana B Caldeira
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
8
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
9
|
Muñoz-Villagrán C, Contreras F, Cornejo F, Figueroa M, Valenzuela-Bezanilla D, Luraschi R, Reinoso C, Rivas-Pardo J, Vásquez C, Castro M, Arenas F. Understanding gold toxicity in aerobically-grown Escherichia coli. Biol Res 2020; 53:26. [PMID: 32513271 PMCID: PMC7278051 DOI: 10.1186/s40659-020-00292-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/16/2020] [Indexed: 12/03/2022] Open
Abstract
Background There is an emerging field to put into practice new strategies for developing molecules with antimicrobial properties. In this line, several metals and metalloids are currently being used for these purposes, although their cellular effect(s) or target(s) in a particular organism are still unknown. Here we aimed to investigate and analyze Au3+ toxicity through a combination of biochemical and molecular approaches. Results We found that Au3+ triggers a major oxidative unbalance in Escherichia coli, characterized by decreased intracellular thiol levels, increased superoxide concentration, as well as by an augmented production of the antioxidant enzymes superoxide dismutase and catalase. Because ROS production is, in some cases, associated with metal reduction and the concomitant generation of gold-containing nanostructures (AuNS), this possibility was evaluated in vivo and in vitro. Conclusions Au3+ is toxic for E. coli because it triggers an unbalance of the bacterium’s oxidative status. This was demonstrated by using oxidative stress dyes and antioxidant chemicals as well as gene reporters, RSH concentrations and AuNS generation.
Collapse
Affiliation(s)
- C Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - F Contreras
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - F Cornejo
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Figueroa
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - D Valenzuela-Bezanilla
- Laboratorio de Microbiología Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Sede Santiago, Chile
| | - R Luraschi
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - C Reinoso
- Laboratorio de Microbiología Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Sede Santiago, Chile
| | - J Rivas-Pardo
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Laboratorio de Biología estructural, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - C Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Castro
- Laboratorio de Microbiología Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Sede Santiago, Chile.
| | - F Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Beleneva IA, Efimova KV, Eliseikina MG, Svetashev VI, Orlova TY. The tellurite-reducing bacterium Alteromonas macleodii from a culture of the toxic dinoflagellate Prorocentrum foraminosum. Heliyon 2019; 5:e02435. [PMID: 31687549 PMCID: PMC6819836 DOI: 10.1016/j.heliyon.2019.e02435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
The Alteromonas macleodii strain 2328 was isolated from a clonal culture of the toxic dinoflagellate Prorocentrum foraminosum. The strain exhibits a resistance to high K2TeO3 concentrations (2500 μg/mL). A study of the growth dynamics of the strain exposed to K2TeO3 has shown a longer lag phase and a reduced stationary phase compared to those during cultivation with no toxicant. The fatty acids profile is dominated by 16:1 (n-7), 16:0, 17:1, 15:0, 18:1 (n-7), and 17:0. The 2328 strain belongs to the Gammaproteobacteria and is related to the genus Alteromonas with 99-100% sequence similarity to some intra-genome allele variants (paralogues) of 16S rRNA from A. macleodii. A phylogenetic reconstruction (ML and NJ), based on HyHK amino acid sequences, has revealed that the analyzed 2328 strain forms a common cluster with A. macleodii strains. In the presented work, the ability of A. macleodii to reduce potassium tellurite to elemental tellurium has been recorded for the first time. Bacteria reduce potassium tellurite to Te (0), nanoparticles of which become distributed diffusely and in the form of electron-dense globules in cytoplasm. Large polymorphous metalloid crystals are formed in the extracellular space. Such feature of the A. macleodii strain 2328 makes it quite attractive for biotechnological application as an organism concentrating the rare metalloid.
Collapse
Affiliation(s)
- Irina A Beleneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Kseniya V Efimova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Marina G Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.,Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690950, Russia
| | - Vasilii I Svetashev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Tatiana Yu Orlova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
11
|
Figueroa M, Fernandez V, Arenas-Salinas M, Ahumada D, Muñoz-Villagrán C, Cornejo F, Vargas E, Latorre M, Morales E, Vásquez C, Arenas F. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins. Front Microbiol 2018; 9:959. [PMID: 29869640 PMCID: PMC5962736 DOI: 10.3389/fmicb.2018.00959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO32- ) and tetrachloro aurate ( AuCl4- ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO32- ) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- μg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 μg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- μg/ml, respectively.
Collapse
Affiliation(s)
- Maximiliano Figueroa
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Valentina Fernandez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Diego Ahumada
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencia, Universidad Santo Tomas, Sede Santiago, Chile
| | - Fabián Cornejo
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Mauricio Latorre
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Beauchef, Santiago, Chile.,Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | | | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
12
|
Arenas-Salinas M, Vargas-Pérez JI, Morales W, Pinto C, Muñoz-Díaz P, Cornejo FA, Pugin B, Sandoval JM, Díaz-Vásquez WA, Muñoz-Villagrán C, Rodríguez-Rojas F, Morales EH, Vásquez CC, Arenas FA. Flavoprotein-Mediated Tellurite Reduction: Structural Basis and Applications to the Synthesis of Tellurium-Containing Nanostructures. Front Microbiol 2016; 7:1160. [PMID: 27507969 PMCID: PMC4960239 DOI: 10.3389/fmicb.2016.01160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023] Open
Abstract
The tellurium oxyanion tellurite (TeO32-) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te0). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)+-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9–10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.
Collapse
Affiliation(s)
| | - Joaquín I Vargas-Pérez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Wladimir Morales
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca Talca, Chile
| | - Camilo Pinto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Pablo Muñoz-Díaz
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Fabián A Cornejo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Benoit Pugin
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Juan M Sandoval
- Facultad de Ciencias de la Salud e Instituto de Etnofarmacología, Universidad Arturo Prat Iquique, Chile
| | - Waldo A Díaz-Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de ChileSantiago, Chile; Facultad de Ciencias de la Salud, Universidad San SebastiánSantiago, Chile
| | - Claudia Muñoz-Villagrán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Fernanda Rodríguez-Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Eduardo H Morales
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Claudio C Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Felipe A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
13
|
Borghese R, Canducci L, Musiani F, Cappelletti M, Ciurli S, Turner RJ, Zannoni D. On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. J Inorg Biochem 2016; 163:103-109. [PMID: 27421695 DOI: 10.1016/j.jinorgbio.2016.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 11/17/2022]
Abstract
The oxyanion tellurite (TeO32-) is extremely toxic to bacterial cells. In Rhodobacter capsulatus, tellurite enters the cytosol by means of the high uptake-rate acetate permease RcActP2, encoded by one of the three actP genes present in this species (actP1, actP2 and actP3). Conversely, in Escherichia coli a low rate influx of the oxyanion is measured, which depends mainly on the phosphate transporter EcPitA, even though E. coli contains its own EcActP acetate permease. Here we report that when the actP2 gene from R. capsulatus is expressed in wild-type E. coli HB101 and in E. coli JW3460 ΔpitA mutant, the cellular intake of tellurite increases up to four times, suggesting intrinsic structural differences between EcActP and RcActP2. Indeed, a sequence analysis indicated the presence in RcActP2 of an insert of 15-16 residues, located between trans-membrane (TM) helices 6 and 7, which is absent in both EcActP and RcActP1. Based on this observation, the molecular models of homodimeric RcActP1 and RcActP2 were calculated and analyzed. In the RcActP2 model, the insert induces a perturbation in the conformation of the loop between TM helices 6 and 7, located at the RcActP2 dimerization interface. This perturbation opens a cavity on the periplasmic side that is closed, instead, in the RcActP1 model. This cavity also features an increase of the positive electric potential on the protein surface, an effect ascribed to specific residues Lys261, Lys281 and Arg560. We propose that this positively charged patch in RcActP2 is involved in recognition and translocation of the TeO32- anion, attributing to RcActP2 a greater ability as compared to RcActP1 to transport this inorganic poison inside the cells.
Collapse
Affiliation(s)
- Roberto Borghese
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Laura Canducci
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Branco R, Morais PV. Two superoxide dismutases from TnOtchr are involved in detoxification of reactive oxygen species induced by chromate. BMC Microbiol 2016; 16:27. [PMID: 26944876 PMCID: PMC4779226 DOI: 10.1186/s12866-016-0648-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background Superoxide dismutases (SOD) have been reported as the most relevant bacterial enzymes involved in cells protection from reactive oxygen species (ROS). These toxic species are often the product of heavy metal stress. Results Two genes, chrC and chrF, from TnOtchr genetic determinant of strain Ochrobactrum tritici 5bvl1 were cloned in Escherichia coli in order to overexpress the respective proteins. Both proteins were purified and characterized as superoxide dismutases. ChrC was confirmed as being a Fe-SOD, and the enzymatic activity of the ChrF, not inhibited by hydrogen peroxide or potassium cyanide, suggested its inclusion in the Mn-SOD family. This identification was supported by chemical quantification of total metal content in purified enzyme. Both enzymes showed a maximum activity between pH 7.2-7.5. ChrF retained nearly full activity over a broader range of pH and was slightly more thermostable than ChrC. The genes encoding these enzymes in strain O. tritici 5bvl1 were inactivated, developing single and double mutants, to understand the contribution of these enzymes in detoxification mechanism of reactive oxygen species induced by chromate. During chromate stress, assays using fluorescent dyes indicated an increase of these toxic compounds in chrC, chrF and chrC/chrF mutant cells. Conclusions In spite of the multiple genes coding for putative superoxide dismutase enzymes detected in the genome of O. tritici 5bvl1, the ChrC and ChrF might help the strain to decrease the levels of reactive oxygen species in cells.
Collapse
Affiliation(s)
- Rita Branco
- CEMUC-Department of Mechanical Engineering, University of Coimbra, 3030-788, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal.
| | - Paula V Morais
- CEMUC-Department of Mechanical Engineering, University of Coimbra, 3030-788, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal.
| |
Collapse
|
15
|
Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL. Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Adv 2016. [DOI: 10.1039/c6ra08447h] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal chalcogenide (metal sulfide, selenide and telluride) quantum dots (QDs) have attracted considerable attention due to their quantum confinement and size-dependent photoemission characteristics.
Collapse
Affiliation(s)
- J. Mal
- UNESCO-IHE
- Delft
- The Netherlands
- Biofouling and Biofilm Process Section
- Water and Steam Chemistry Division
| | - Y. V. Nancharaiah
- UNESCO-IHE
- Delft
- The Netherlands
- Université Paris-Est
- Laboratoire Géomatériaux et Environnement (LGE)
| | - E. D. van Hullebusch
- Biofouling and Biofilm Process Section
- Water and Steam Chemistry Division
- Bhabha Atomic Research Centre
- Kalpakkam-603102
- India
| | - P. N. L. Lens
- UNESCO-IHE
- Delft
- The Netherlands
- Department of Chemistry and Bioengineering
- Tampere University of Technology
| |
Collapse
|
16
|
Vrionis HA, Wang S, Haslam B, Turner RJ. Selenite Protection of Tellurite Toxicity Toward Escherichia coli. Front Mol Biosci 2015; 2:69. [PMID: 26732755 PMCID: PMC4683179 DOI: 10.3389/fmolb.2015.00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023] Open
Abstract
In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. Due to the potential importance of thiol chemistry in metal biochemistry, deletion strains in γ-glutamylcysteine synthetase (key step in glutathione biosynthesis, encoded by gshA), thioredoxin (trxA), glutaredoxin (grxA), glutathione oxidoreductase (gor), and the periplasmic glutathione transporter (cydD) were also evaluated for resistance to various metals in the presence of selenite. The protective effect of selenite on tellurite toxicity was seen in several of the mutants and was pronounced in the gshA mutant were resistance to tellurite was increased up to 1000-fold relative to growth in the absence of selenite. Thiol oxidation studies revealed a faster rate of loss of reduced thiol content in the cell with selenite than with tellurite, indicating differential thiol reactivity. Selenite addition resulted in reactive oxygen species (ROS) production equivalent to levels associated with H2O2 addition. Tellurite addition resulted in considerably lower ROS generation while vanadate and chromate treatment did not increase ROS production above that of background. This work shows increased resistance toward most oxyanions in mutants of thiol redox suggesting that metalloid reaction with thiol components such as glutathione actually enhances toxicity of some metalloids.
Collapse
Affiliation(s)
- Helen A Vrionis
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Siyuan Wang
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Bronwyn Haslam
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
17
|
Elías A, Díaz-Vásquez W, Abarca-Lagunas MJ, Chasteen TG, Arenas F, Vásquez CC. The ActP acetate transporter acts prior to the PitA phosphate carrier in tellurite uptake by Escherichia coli. Microbiol Res 2015. [DOI: 10.1016/j.micres.2015.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Sandoval JM, Arenas FA, García JA, Díaz-Vásquez WA, Valdivia-González M, Sabotier M, Vásquez CC. Escherichia coli 6-phosphogluconate dehydrogenase aids in tellurite resistance by reducing the toxicant in a NADPH-dependent manner. Microbiol Res 2015. [PMID: 26211962 DOI: 10.1016/j.micres.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exposure to the tellurium oxyanion tellurite (TeO3(2-)) results in the establishment of an oxidative stress status in most microorganisms. Usually, bacteria growing in the presence of the toxicant turn black because of the reduction of tellurite (Te(4+)) to the less-toxic elemental tellurium (Te(0)). In vitro, at least part of tellurite reduction occurs enzymatically in a nicotinamide dinucleotide-dependent reaction. In this work, we show that TeO3(2-) reduction by crude extracts of Escherichia coli overexpressing the zwf gene (encoding glucose-6-phosphate dehydrogenase) takes place preferentially in the presence of NADPH instead of NADH. The enzyme responsible for toxicant reduction was identified as 6-phosphogluconate dehydrogenase (Gnd). The gnd gene showed a subtle induction at short times after toxicant exposure while strains lacking gnd were more susceptible to the toxicant. These results suggest that both NADPH-generating enzymes from the pentose phosphate shunt may be involved in tellurite detoxification and resistance in E. coli.
Collapse
Affiliation(s)
- J M Sandoval
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - F A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - J A García
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - W A Díaz-Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Facultad de Ciencias de la Salud, Universidad San Sebastián, Santiago, Chile
| | - M Valdivia-González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Sabotier
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - C C Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Pontieri P, De Stefano M, Massardo DR, Gunge N, Miyakawa I, Sando N, Pignone D, Pizzolante G, Romano R, Alifano P, Del Giudice L. Tellurium as a valuable tool for studying the prokaryotic origins of mitochondria. Gene 2015; 559:177-83. [PMID: 25644076 DOI: 10.1016/j.gene.2015.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Mitochondria are eukaryotic organelles which contain the own genetic material and evolved from free-living Eubacteria, namely hydrogen-producing Alphaproteobacteria. Since 1965, biologists provided, by research at molecular level, evidence for the prokaryotic origins of mitochondria. However, determining the precise origins of mitochondria is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. The use of new tools to evidence the prokaryotic origin of mitochondria could be useful to gain an insight into the bacterial endosymbiotic event that resulted in the permanent acquisition of bacteria, from the ancestral cell, that through time were transformed into mitochondria. Electron microscopy has shown that both proteobacterial and yeast cells during their growth in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture due to elemental tellurium (Te(0)) that formed large deposits either along the proteobacterial membrane or along the yeast cell wall and mitochondria. Since the mitochondrial inner membrane composition is similar to that of proteobacterial membrane, in the present work we evidenced the black tellurium deposits on both, cell wall and mitochondria of ρ(+) and respiratory deficient ρ(-) mutants of yeast. A possible role of tellurite in studying the evolutionary origins of mitochondria will be discussed.
Collapse
Affiliation(s)
- Paola Pontieri
- Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| | - Mario De Stefano
- Department of Environmental Sciences, Second University of Naples, via A. Vivaldi 43, 81100 Caserta, Italy
| | - Domenica Rita Massardo
- Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| | - Norio Gunge
- Sojo-University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Isamu Miyakawa
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Nobundo Sando
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Domenico Pignone
- Institute of Biosciences and Bioresources (IBBR), CNR, 70126 Bari, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Luigi Del Giudice
- Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| |
Collapse
|
20
|
Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions. Arch Biochem Biophys 2015; 566:67-75. [DOI: 10.1016/j.abb.2014.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/27/2014] [Accepted: 10/19/2014] [Indexed: 11/20/2022]
|
21
|
Anaganti N, Basu B, Gupta A, Joseph D, Apte SK. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity inDeinococcus radiodurans. Proteomics 2014; 15:89-97. [DOI: 10.1002/pmic.201400113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/05/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
Affiliation(s)
| | - Bhakti Basu
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Alka Gupta
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Daisy Joseph
- Nuclear Physics Division; Bhabha Atomic Research Centre; Mumbai India
| | - Shree Kumar Apte
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
22
|
Bonificio WD, Clarke DR. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J Appl Microbiol 2014; 117:1293-304. [PMID: 25175548 DOI: 10.1111/jam.12629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
Abstract
AIMS Tellurium-based devices, such as photovoltaic (PV) modules and thermoelectric generators, are expected to play an increasing role in renewable energy technologies. Tellurium, however, is one of the scarcest elements in the earth's crust, and current production and recycling methods are inefficient and use toxic chemicals. This study demonstrates an alternative, bacterially mediated tellurium recovery process. METHODS AND RESULTS We show that the hydrothermal vent microbe Pseudoalteromonas sp. strain EPR3 can convert tellurium from a wide variety of compounds, industrial sources and devices into metallic tellurium and a gaseous tellurium species. These compounds include metallic tellurium (Te(0)), tellurite (TeO3(2-)), copper autoclave slime, tellurium dioxide (TeO2), tellurium-based PV material (cadmium telluride, CdTe) and tellurium-based thermoelectric material (bismuth telluride, Bi2Te3). Experimentally, this was achieved by incubating these tellurium sources with the EPR3 in both solid and liquid media. CONCLUSIONS Despite the fact that many of these tellurium compounds are considered insoluble in aqueous solution, they can nonetheless be transformed by EPR3, suggesting the existence of a steady state soluble tellurium concentration during tellurium transformation. SIGNIFICANCE AND IMPACT OF THE STUDY These experiments provide insights into the processes of tellurium precipitation and volatilization by bacteria, and their implications on tellurium production and recycling.
Collapse
Affiliation(s)
- W D Bonificio
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
23
|
Borghese R, Baccolini C, Francia F, Sabatino P, Turner RJ, Zannoni D. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:24-30. [PMID: 24462199 DOI: 10.1016/j.jhazmat.2013.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te(IV)) and selenite (Se(IV)) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te(0) in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se(0) precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te(0) and Se(0)nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te(0) and Se(0) nature of the nanoparticles.
Collapse
Affiliation(s)
- Roberto Borghese
- Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| | - Chiara Baccolini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Piera Sabatino
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| |
Collapse
|
24
|
Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tü494. PLoS One 2014; 9:e87905. [PMID: 24498397 PMCID: PMC3912134 DOI: 10.1371/journal.pone.0087905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
Abstract
The aconitase AcnA from the phosphinothricin tripeptide producing strain Streptomyces viridochromogenes Tü494 is a bifunctional protein: under iron-sufficiency conditions AcnA functions as an enzyme of the tricarboxylic acid cycle, whereas under iron depletion it is a regulator of iron metabolism and oxidative stress response. As a member of the family of iron regulatory proteins (IRP), AcnA binds to characteristic iron responsive element (IRE) binding motifs and post-transcriptionally controls the expression of respective target genes. A S. viridochromogenes aconitase mutant (MacnA) has previously been shown to be highly sensitive to oxidative stress. In the present paper, we performed a comparative proteomic approach with the S. viridochromogenes wild-type and the MacnA mutant strain under oxidative stress conditions to identify proteins that are under control of the AcnA-mediated regulation. We identified up to 90 differentially expressed proteins in both strains. In silico analysis of the corresponding gene sequences revealed the presence of IRE motifs on some of the respective target mRNAs. From this proteome study we have in vivo evidences for a direct AcnA-mediated regulation upon oxidative stress.
Collapse
|
25
|
Tellurite reduction by Escherichia coli NDH-II dehydrogenase results in superoxide production in membranes of toxicant-exposed cells. Biometals 2014; 27:237-46. [DOI: 10.1007/s10534-013-9701-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 02/05/2023]
|
26
|
Aradská J, Šmidák R, Turkovičová L, Turňa J, Lubec G. Proteomic differences between tellurite-sensitive and tellurite-resistant E.coli. PLoS One 2013; 8:e78010. [PMID: 24244285 PMCID: PMC3823874 DOI: 10.1371/journal.pone.0078010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 01/20/2023] Open
Abstract
Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level. In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap). In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins. Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control. The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon function by a specific mode of action in the mechanism of tellurite resistance probably involving protein cascades from antioxidant and protein folding pathways.
Collapse
Affiliation(s)
- Jana Aradská
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Roman Šmidák
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Lenka Turkovičová
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
27
|
Sandoval JM, Verrax J, Vásquez CC, Calderon PB. A comparative study of tellurite toxicity in normal and cancer cells. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-012-0040-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Elías AO, Abarca MJ, Montes RA, Chasteen TG, Pérez-Donoso JM, Vásquez CC. Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiologyopen 2012. [PMID: 23189244 PMCID: PMC3501828 DOI: 10.1002/mbo3.26] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several transporters suspected to be involved in tellurite uptake in Escherichia coli were analyzed. Results showed that the PitA phosphate transporter was related to tellurite uptake. Escherichia coli ΔpitA was approximately four-fold more tolerant to tellurite, and cell viability remained almost unchanged during prolonged exposure to the toxicant as compared with wild type or ΔpitB cells. Notably, reduced thiols (toxicant targets) as well as superoxide dismutase, catalase, and fumarase C activities did not change when exposing the ΔpitA strain to tellurite, suggesting that tellurite-triggered oxidative damage is attenuated in the absence of PitA. After toxicant exposure, remaining extracellular tellurite was higher in E. coli ΔpitA than in control cells. Whereas inductively coupled plasma atomic emission spectrometric studies confirmed that E. coli ΔpitA accumulates ∼50% less tellurite than the other strains under study, tellurite strongly inhibited 32Pi uptake suggesting that the PitA transporter is one of the main responsible for tellurite uptake in this bacterium.
Collapse
Affiliation(s)
- Alex O Elías
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Chile
| | | | | | | | | | | |
Collapse
|
29
|
Reinoso CA, Auger C, Appanna VD, Vásquez CC. Tellurite-exposed Escherichia coli exhibits increased intracellular α-ketoglutarate. Biochem Biophys Res Commun 2012; 421:721-6. [DOI: 10.1016/j.bbrc.2012.04.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
30
|
Thompson AK, Gray J, Liu A, Hosler JP. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:955-64. [PMID: 22248670 DOI: 10.1016/j.bbabio.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/28/2022]
Abstract
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Audie K Thompson
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
31
|
Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:898-910. [PMID: 22079199 DOI: 10.1016/j.bbabio.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022]
Abstract
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Seda Ekici
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
32
|
Sandoval JM, Arenas FA, Vásquez CC. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress. PLoS One 2011; 6:e25573. [PMID: 21984934 PMCID: PMC3184162 DOI: 10.1371/journal.pone.0025573] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/07/2011] [Indexed: 11/27/2022] Open
Abstract
The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.
Collapse
Affiliation(s)
- Juan M. Sandoval
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe A. Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio C. Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
33
|
Turner RJ, Borghese R, Zannoni D. Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 2011; 30:954-63. [PMID: 21907273 DOI: 10.1016/j.biotechadv.2011.08.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023]
Abstract
Here, we overview the most recent advances in understanding the bacterial mechanisms that stay behind the reduction of tellurium oxyanions in both planktonic cells and biofilms. This is a topic of interest for basic and applied research because microorganisms are deeply involved in the transformation of metals and metalloids in the environment. In particular, the recent observation that toxic tellurite can be precipitated either inside or outside the cells being used as electron sink to support bacterial growth, opens new perspectives for both microbial physiologists and biotechnologists. As promising nanomaterials, tellurium based nanoparticles show unique electronic and optical properties due to quantum confinement effects to be used in the area of chemistry, electronics, medicine and environmental biotechnologies.
Collapse
Affiliation(s)
- Raymond J Turner
- Dept of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
34
|
Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP). Antonie van Leeuwenhoek 2011; 100:655-8. [PMID: 21735076 DOI: 10.1007/s10482-011-9619-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
The highly toxic oxyanion tellurite (TeO(3) (2-)) enters the cells of the facultative photosynthetic bacterium Rhodobacter capsulatus through an acetate permease. Here we show that actP gene expression is down-regulated by fructose and this in turn determines a strong decrease of tellurite uptake and a parallel increase in the cells resistance to the toxic metalloid (from a minimal inhibitory concentration of 8 μM up to 400 μM tellurite under aerobic growth conditions). This demonstrates that there exists a direct connection between the level of tellurite uptake and the sensitivity of the cells to the oxyanion.
Collapse
|
35
|
Arenas FA, Covarrubias PC, Sandoval JM, Pérez-Donoso JM, Imlay JA, Vásquez CC. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species. PLoS One 2011; 6:e15979. [PMID: 21264338 PMCID: PMC3018469 DOI: 10.1371/journal.pone.0015979] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022] Open
Abstract
This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS). Cells lacking btuE (ΔbtuE) displayed higher sensitivity to K(2)TeO(3) and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2)O(2) did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(-)) resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.
Collapse
Affiliation(s)
- Felipe A. Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Paulo C. Covarrubias
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M. Sandoval
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - José M. Pérez-Donoso
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Claudio C. Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
36
|
Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 9:1635-47. [PMID: 20675578 DOI: 10.1128/ec.00078-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite a century of research and increasing environmental and human health concerns, the mechanistic basis of the toxicity of derivatives of the metalloid tellurium, Te, in particular the oxyanion tellurite, Te(IV), remains unsolved. Here, we provide an unbiased view of the mechanisms of tellurium metabolism in the yeast Saccharomyces cerevisiae by measuring deviations in Te-related traits of a complete collection of gene knockout mutants. Reduction of Te(IV) and intracellular accumulation as metallic tellurium strongly correlated with loss of cellular fitness, suggesting that Te(IV) reduction and toxicity are causally linked. The sulfate assimilation pathway upstream of Met17, in particular, the sulfite reductase and its cofactor siroheme, was shown to be central to tellurite toxicity and its reduction to elemental tellurium. Gene knockout mutants with altered Te(IV) tolerance also showed a similar deviation in tolerance to both selenite and, interestingly, selenomethionine, suggesting that the toxicity of these agents stems from a common mechanism. We also show that Te(IV) reduction and toxicity in yeast is partially mediated via a mitochondrial respiratory mechanism that does not encompass the generation of substantial oxidative stress. The results reported here represent a robust base from which to attack the mechanistic details of Te(IV) toxicity and reduction in a eukaryotic organism.
Collapse
|
37
|
Whitby PW, Seale TW, Morton DJ, VanWagoner TM, Stull TL. Characterization of the Haemophilus influenzae tehB gene and its role in virulence. MICROBIOLOGY-SGM 2010; 156:1188-1200. [PMID: 20075041 DOI: 10.1099/mic.0.036400-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Haemophilus influenzae ORF designated HI1275 in the Rd KW20 genomic sequence encodes a putative S-adenosyl methyltransferase with significant similarity to tellurite-resistance determinants (tehB) in other species. While the H. influenzae tehB can complement an Escherichia coli tehB mutation, thus restoring tellurite resistance, its role in H. influenzae is unknown. In a previous study defining the iron and haem modulon of H. influenzae, we showed that transcription of this gene in H. influenzae Rd KW20 increases during growth in iron- and haem-restricted media. Since iron and haem uptake genes, and other known virulence factors, constitute the majority of the iron- and haem-regulated gene set, we postulated that tehB may play a role in nutrient acquisition and/or the virulence of H. influenzae. A tehB mutant was constructed in the H. influenzae type b strain 10810 and was evaluated for growth defects in various supplemented media, as well as for its ability to cause infection in rat models of infection. Deletion of tehB leads to an increase in sensitivity both to tellurite and to the oxidizing agents cumene hydroperoxide, tert-butyl hydroperoxide and hydrogen peroxide. The tehB mutant additionally showed a significantly reduced ability to utilize free haem as well as several haem-containing moieties including haem-human serum albumin, haemoglobin and haemoglobin-haptoglobin. Examination of the regulation kinetics indicated that transcription of tehB was independent of both tellurite exposure and oxidative stress. Paired comparisons of the tehB mutant and the wild-type H. influenzae strain 10810 showed that tehB is required for wild-type levels of infection in rat models of H. influenzae invasive disease. To our knowledge this is the first report of a role for tehB in virulence in any bacterial species. These data demonstrate that H. influenzae tehB plays a role in both resistance to oxidative damage and haem uptake/utilization, protects H. influenzae from tellurite exposure, and is important for virulence of this organism in an animal model of invasive disease.
Collapse
Affiliation(s)
- Paul W Whitby
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Thomas W Seale
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel J Morton
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M VanWagoner
- Department of Biology, Oklahoma Christian University, Oklahoma City, OK 73136, USA
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terrence L Stull
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
38
|
Acetate permease (ActP) Is responsible for tellurite (TeO32-) uptake and resistance in cells of the facultative phototroph Rhodobacter capsulatus. Appl Environ Microbiol 2009; 76:942-4. [PMID: 19966028 DOI: 10.1128/aem.02765-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly toxic oxyanion tellurite has to enter the cytoplasm of microbial cells in order to fully express its toxicity. Here we show that in the phototroph Rhodobacter capsulatus, tellurite exploits acetate permease (ActP) to get into the cytoplasm and that the levels of resistance and uptake are linked.
Collapse
|
39
|
Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 2009; 33:820-32. [DOI: 10.1111/j.1574-6976.2009.00177.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Carvalho CAS, Gemelli T, Guerra RB, Oliboni L, Salvador M, Dani C, Araújo AS, Mascarenhas M, Funchal C. Effect of in vitro exposure of human serum to 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress. Mol Cell Biochem 2009; 332:127-34. [PMID: 19554424 DOI: 10.1007/s11010-009-0182-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/09/2009] [Indexed: 01/24/2023]
Abstract
The objective of this study was to verify the effect of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in human serum. Serum of volunteers were incubated for 30 min in the presence or absence of 1, 10, or 30 microM of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one and oxidative stress was measured. First, we tested the influence of the compound on 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) radical-scavenging and verified that the organotellurium did not have any antioxidant properties. The organochalcogen was capable to enhance TBARS but the compound was not able to alter carbonyl assay. Furthermore, the organochalcogen provoked a reduction of protein thiol groups measured by the sulfhydryl assay. Moreover, the organotellurium enhanced the activity of catalase and superoxide dismutase, inhibited the activity of glutathione peroxidase and did not modify the glutathione S-transferase activity. Furthermore, nitric oxide production and hydroxyl radical activity were not affected by the compound. Our findings showed that this organochalcogen induces oxidative stress in human serum, indicating that this compound is potentially toxic to human beings.
Collapse
Affiliation(s)
- Carlos Augusto Souza Carvalho
- Rede Metodista de Educação do Sul, Centro Universitário Metodista IPA. Rua Cel. Joaquim Pedro Salgado, 80, Porto Alegre, RS, 90420-060, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Calderón IL, Elías AO, Fuentes EL, Pradenas GA, Castro ME, Arenas FA, Pérez JM, Vásquez CC. Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases. MICROBIOLOGY-SGM 2009; 155:1840-1846. [PMID: 19383690 DOI: 10.1099/mic.0.026260-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tellurium oxyanion tellurite is toxic for most organisms and it seems to alter a number of intracellular targets. In this work the toxic effects of tellurite upon Escherichia coli [4Fe-4S] cluster-containing dehydratases was studied. Reactive oxygen species (ROS)-sensitive fumarase A (FumA) and aconitase B (AcnB) as well as ROS-resistant fumarase C (FumC) and aconitase A (AcnA) were assayed in cell-free extracts from tellurite-exposed cells in both the presence and absence of oxygen. While over 90 % of FumA and AcnB activities were lost in the presence of oxygen, no enzyme inactivation was observed in anaerobiosis. This result was not dependent upon protein biosynthesis, as determined using translation-arrested cells. Enzyme activity of purified FumA and AcnB was inhibited when exposed to an in vitro superoxide-generating, tellurite-reducing system (ITRS). No inhibitory effect was observed when tellurite was omitted from the ITRS. In vivo and in vitro reconstitution experiments with tellurite-damaged FumA and AcnB suggested that tellurite effects involve [Fe-S] cluster disabling. In fact, after exposing FumA to ITRS, released ferrous ion from the enzyme was demonstrated by spectroscopic analysis using the specific Fe(2+) chelator 2,2'-bipyridyl. Subsequent spectroscopic paramagnetic resonance analysis of FumA exposed to ITRS showed the characteristic signal of an oxidatively inactivated [3Fe-4S](+) cluster. These results suggest that tellurite inactivates enzymes of this kind via a superoxide-dependent disabling of their [4Fe-4S] catalytic clusters.
Collapse
Affiliation(s)
- Iván L Calderón
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex O Elías
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eugenia L Fuentes
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Gonzalo A Pradenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Miguel E Castro
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe A Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - José M Pérez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio C Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
42
|
Penz J, Gemelli T, Carvalho CAS, Guerra RB, Oliboni L, Salvador M, Dani C, Araújo AS, Funchal C. Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats. Food Chem Toxicol 2009; 47:745-51. [DOI: 10.1016/j.fct.2009.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/11/2008] [Accepted: 01/04/2009] [Indexed: 01/25/2023]
|
43
|
Cloning, purification and characterization of Geobacillus stearothermophilus V uroporphyrinogen-III C-methyltransferase: evaluation of its role in resistance to potassium tellurite in Escherichia coli. Res Microbiol 2009; 160:125-33. [DOI: 10.1016/j.resmic.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/05/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022]
|
44
|
Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, Tatti E, Zhang P, Hynes AP, Turner RJ, Zannoni D. Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 2009; 75:719-28. [PMID: 19047385 PMCID: PMC2632130 DOI: 10.1128/aem.01771-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/22/2008] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 is naturally resistant to the toxic metalloid tellurite, but the mechanisms of resistance are not known. In this study we report the isolation of a KF707 mutant (T5) with hyperresistance to tellurite. In order to characterize the bacterial response and the pathways leading to tolerance, we utilized Phenotype MicroArray technology (Biolog) and a metabolomic technique based on nuclear magnetic resonance spectroscopy. The physiological states of KF707 wild-type and T5 cells exposed to tellurite were also compared in terms of viability and reduced thiol content. Our analyses showed an extensive change in metabolism upon the addition of tellurite to KF707 cultures as well as different responses when the wild-type and T5 strains were compared. Even in the absence of tellurite, T5 cells displayed a "poised" physiological status, primed for tellurite exposure and characterized by altered intracellular levels of glutathione, branched-chain amino acids, and betaine, along with increased resistance to other toxic metals and metabolic inhibitors. We conclude that hyperresistance to tellurite in P. pseudoalcaligenes KF707 is correlated with the induction of the oxidative stress response, resistance to membrane perturbation, and reconfiguration of cellular metabolism.
Collapse
|
45
|
|
46
|
Pseudomonas pseudoalcaligenes KF707 upon biofilm formation on a polystyrene surface acquire a strong antibiotic resistance with minor changes in their tolerance to metal cations and metalloid oxyanions. Arch Microbiol 2008; 190:29-39. [DOI: 10.1007/s00203-008-0360-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 02/07/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
47
|
Ozasa K, Nemoto S, Li Y, Hara M, Maeda M, Mochitate K. Contact angle and biocompatibility of sol-gel prepared TiO2 thin films for their use as semiconductor-based cell-viability sensors. SURF INTERFACE ANAL 2008. [DOI: 10.1002/sia.2729] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Zannoni D, Borsetti F, Harrison JJ, Turner RJ. The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 2007; 53:1-72. [PMID: 17707143 DOI: 10.1016/s0065-2911(07)53001-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microbial metabolism of inorganics has been the subject of interest since the 1970s when it was recognized that bacteria are involved in the transformation of metal compounds in the environment. This area of research is generally referred to as bioinorganic chemistry or microbial biogeochemistry. Here, we overview the way the chalcogen metalloids Se and Te interact with bacteria. As a topic of considerable interest for basic and applied research, bacterial processing of tellurium and selenium oxyanions has been reviewed a few times over the past 15 years. Oddly, this is the first time these compounds have been considered together and their similarities and differences highlighted. Another aspect touched on for the first time by this review is the bacterial response in cell-cell or cell-surface aggregates (biofilms) against the metalloid oxyanions. Finally, in this review we have attempted to rationalize the considerable amount of literature available on bacterial resistance to the toxic metalloids tellurite and selenite.
Collapse
Affiliation(s)
- Davide Zannoni
- Department of Biology, Unit of General Microbiology, Faculty of Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
49
|
Borghese R, Marchetti D, Zannoni D. The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system. Arch Microbiol 2007; 189:93-100. [PMID: 17713758 DOI: 10.1007/s00203-007-0297-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/21/2007] [Accepted: 07/26/2007] [Indexed: 11/25/2022]
Abstract
The facultative phototroph Rhodobacter capsulatus takes up the highly toxic oxyanion tellurite when grown under both photosynthetic and respiratory growth conditions. Previous works on Escherichia coli and R. capsulatus suggested that tellurite uptake occurred through a phosphate transporter. Here we present evidences indicating that tellurite enters R. capsulatus cells via a monocarboxylate transport system. Indeed, intracellular accumulation of tellurite was inhibited by the addition of monocarboxylates such as pyruvate, lactate and acetate, but not by dicarboxylates like malate or succinate. Acetate was the strongest tellurite uptake antagonist and this effect was concentration dependent, being already evident at 1 microM acetate. Conversely, tellurite at 100 microM was able to restrict the acetate entry into the cells. Both tellurite and acetate uptakes were energy dependent processes, since they were abolished by the protonophore FCCP and by the respiratory electron transport inhibitor KCN. Interestingly, cells grown on acetate, lactate or pyruvate showed a high level resistance to tellurite, whereas cells grown on malate or succinate proved to be very sensitive to the oxyanion. Taking these data together, we propose that: (a) tellurite enters R. capsulatus cells via an as yet uncharacterized monocarboxylate(s) transporter, (b) competition between acetate and tellurite results in a much higher level of tolerance against the oxyanion and (c) the toxic action of tellurite at the cytosolic level is significantly restricted by preventing tellurite uptake.
Collapse
Affiliation(s)
- Roberto Borghese
- Department of Biology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | | | | |
Collapse
|
50
|
Banci L, Bertini I, Cavallaro G, Rosato A. The functions of Sco proteins from genome-based analysis. J Proteome Res 2007; 6:1568-79. [PMID: 17300187 DOI: 10.1021/pr060538p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sco proteins are widespread proteins found in eukaryotic as well as in many prokaryotic organisms. The 3D structure of representatives from human, yeast, and Bacillus subtilis has been determined, showing a thioredoxin-like fold. Sco proteins have been implicated mainly as copper transporters involved in the assembly of the CuA cofactor in cytochrome c oxidase. Some mutations have been identified in humans that lead to defective cytochrome c oxidase formation and thus to fatal illnesses. However, it appears that the physiological function of Sco proteins goes beyond assembly of the CuA cofactor. Extensive analysis of completely sequenced prokaryotic genomes reveals that 18% of them contain either Sco proteins but not CuA-containing proteins or vice versa. In addition, in several cases, multiple Sco-encoding genes occur even if only a single potential Sco target is encoded in the genome. Genomic context analysis indeed points to a more general role for Sco proteins in copper transport, also to copper enzymes lacking a CuA cofactor. To obtain further insight into the possible role of Sco in the assembly of other cofactors, a search for Cox11 proteins, which are important for CuB biosynthesis, was also performed. A general framework for the action of Sco proteins is proposed, based on the hypothesis that they can couple metal transport and thiol/disulfide-based oxidoreductase activity, as well as select between either of these two cellular functions. This model reconciles the variety of experimental observations made on these proteins over the years, and can constitute a basis for further studies.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|